首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase (triacylglycerol acylhydrolase [EC 3.1.1.3.]) was extracted from the microsomal fraction of cotyledons of dark grown seedlings of Canola (Brassica napus L. cv Westar) by treatment with Triton X-100. The enzyme was partially purified by chromatography on Sephacryl S-300 and DEAE Bio-Gel and was stable when stored at −20°C in 50% (v/v) glycerol. The lipase aggregated readily but the distribution of species present in solution could be controlled by nonionic detergents. A species with an apparent Mr of about 250,000 was obtained by gel filtration chromatography in the presence of 1% (v/v) Triton X-100. Lipase activity was optimal near neutral pH, and the reaction approached maximum velocity at a concentration of 0.5 to 1 millimolar emulsified triolein. The reaction rate responded linearly to temperature up to about 40°C and the hydrolytic process had an activation energy of 18 kilocalories per mole. Microsomal lipase lost about 20% and 80% activity when heat-treated for 1 hour at 40°C and 60°C, respectively. At appropriate concentrations, the detergents Triton X-100, n-octyl-β-d-glucopyranoside, (3-[(3-cholamidopropyl-O-dimethylammonio]-1-propanesulfonate, cetyl trimethylammonium bromide, and sodium dodecyl sulfate all inhibited lipase activity. n-Octyl-β-d-glucopyranoside, however, was stimulatory in the 2 to 8 millimolar concentration range. The inhibitory effects of Triton X-100 were reversible.  相似文献   

2.
F Ghomashchi  T O'Hare  D Clary  M H Gelb 《Biochemistry》1991,30(29):7298-7305
The kinetics of hydrolysis of phospholipid vesicles by phospholipase A2 (PLA2) in the scooting mode can be described by the Michaelis-Menten formalism for the action of the enzyme in the interface (E*). E* + S in equilibrium E*S in equilibrium E*P in equilibrium E* + Products The values of the interfacial rate constants cannot be obtained by classical methods because the concentration of the substrate within the lipid bilayer is not easily manipulated. In the present study, carbonyl-carbon heavy atom isotope effects for the hydrolysis of phospholipids have been measured in both vesicles and in mixed micelles in which the phospholipid was present in the nonionic detergent Triton X-100. A large [14C]carbonyl carbon isotope effect of 1.12 +/- 0.02 was measured for the cobra venom PLA2-catalyzed hydrolysis of dipalmitoylphosphatidylcholine in Triton X-100. In contrast, no isotope effect (1.01 +/- 0.01) was measured for the action of the porcine pancreatic and cobra venom enzymes on vesicles of dimyristoylphosphatidylmethanol in the scooting mode. In a second experiment, the hydrolysis of vesicles was carried out in oxygen-18 enriched water. Analysis of the released fatty acid product by mass spectrometry showed that it contained only a single oxygen-18. All of these results were used to estimate both the forward and reverse commitments to catalysis. The lack of doubly labeled fatty acid demonstrated that the product is released from the E*P complex faster than the reverse of the esterolysis step. The small isotope effect in vesicles demonstrated that the E*S complex goes on to products faster than substrate is released from the enzyme. The relevance of these results to an understanding of substrate specificity and inhibition of PLA2 is discussed. In addition, the conditions placed on the values of the rate constants obtained in the present study together with results obtained in the other studies described in this series of papers have led to the evaluation of most of the interfacial rate constants for the hydrolysis of phospholipid vesicles by PLA2.  相似文献   

3.
The highly purified respiratory chain NADH dehydrogenase (EC 1.6.99.3) of Escherichia coli is inactive in the absence of detergent or phospholipid. Triton X-100 is the detergent that gives optimal activity, but the Triton X-100-activated enzyme is stimulated an additional 2-fold by E. coli phospholipids. Phosphatidylglycerol and diphosphatidylglycerol are the most effective lipid activators. The activated complex prepared with diphosphatidylglycerol is stable, whereas that with phosphatidylglycerol loses activity rapidly. Maximum activation by phospholipids occurs after preincubation at 0 degrees C and at pH 7. Triton X-100 is required at low concentrations for lipid activation, but high concentrations interfere with the activation. When the enzyme is optimally activated by phospholipids, it may be additionally activated 2-fold by spermidine, but not by magnesium. In contrast, the Triton X-100-activated form of the enzyme is stimulated by several divalent cations, without specificity. Thus, the most stable, active form of the purified NADH dehydrogenase is generated in the presence of diphosphatidylglycerol and spermidine.  相似文献   

4.
The effects of phospholipids on the reaction catalyzed by UDP-GlcNAc:dolichol phosphate GlcNAc-1-phosphate transferase have been studied with delipidated rat lung microsomes. Deoxycholate-solubilized enzyme was depleted of measurable phospholipid by either gel filtration on Sephadex G-100 or affinity chromatography on pentyl-agarose. The latter procedure also removed nucleotide and sugar nucleotide hydrolases. Delipidated protein fractions were devoid of GlcNAc-1-phosphate transferase activity unless supplemented with phospholipids. Maximal recovery of enzyme activity was obtained with an approximate 1:1 weight ratio of phosphatidylglycerol:phosphatidylcholine, with the observed rate being synergistic as compared to rates observed for each individual phospholipid. Variable recoveries of enzyme activity were obtained with mixtures containing other acidic phospholipids and phosphatidylcholine. Enzyme activity in the fraction eluted from pentyl-agarose could be recovered, after removal of Triton X-100, with sedimented phospholipid vesicles. Significant stabilization of enzyme activity associated with the phospholipid vesicles was obtained by the inclusion of dolichol phosphate.  相似文献   

5.
Extraction of red beet root plasma membranes with the detergent Triton X-100 at a level of 2.0% (weight/volume) resulted in the depletion of over 90% of total membrane phospholipid and the reduction of glucan synthase activity by 80 to 90%. Reconstitution of the delipidated Triton X-100, 100,000g fraction in the presence of phospholipids restored glucan synthase activity. The most effective phospholipid was phosphatidyl-ethanolamine, which restored 110 to 144% of the original activity at 0.5% (weight/volume). Glucan synthase in the phospholipid-reactivated Triton X-100-treated fraction was enriched 9-fold in specific activity relative to microsomal membranes but was unstable in digitonin. These results support the hypothesis that glucan synthase activity is regulated by its phospholipid environment.  相似文献   

6.
Evidence is presented that lipid plays an important role in the function of the microsomal cholesterol ester hydrolase of rat brain. The catalytic activity was almost completely lost when most of cholesterol and up to 70% of phospholipids were removed from lyophilized microsomes by extraction with chloroform at ?20 °C. The activity was completely restored when the chloroform-extracted lipid was added back to the assay mixture in the amount equal to the original concentration. Cholesterol or individual phospholipid alone was not effective in reconstituting the lost enzymatic activity. Effective restoration of the activity required addition of cholesterol and a phospholipid. Among the phospholipids tested, phosphatidylserine was the most effective, followed by ethanolamine phospholipids and phosphatidylcholine. The apparent V was dependent on the amount of the lipid added, while the Km for the substrate, cholesteryl oleate, remained relatively constant, indicating that the effect of the added lipid was primarily on the reaction rate and not on the affinity of the enzyme to the substrate. The similar lipid dependence was observed with the Triton X-100-solubilized enzyme preparation. When the lipid phase of the microsomal membrane was perturbed, the enzyme became unstable when heated at 50 °C and its activity showed a discontinuity in the Arrhenius plots. Therefore, not only the concentration of the added lipid but also the physical state of the lipid phase around the enzyme appeared to be important for the activity of the rat brain microsomal cholesterol ester hydrolase.  相似文献   

7.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

8.
The influence of phospholipids and Triton X-100 on the time course of chemical and enzyme-mediated reductions of a commonly used tetrazolium salt, MTT, was studied. MTT reduction was followed by the absorbance changes at 570 nm. With ascorbate as reducing agent, a 3-fold increase in the initial rates of the absorbance changes and a 24 % increase in the final absorbance values were observed in the presence of Triton X-100 micelles or phospholipid vesicles. The enzyme-mediated reduction of MTT with NADH generated by the NAD-dependent lactate dehydrogenase was also enhanced in the presence of Triton X-100, phospholipids or erythrocyte membranes. No enhancement was observed following the enzymatic generation of NADH at 340 nm in the absence of MTT. The above findings were interpreted as arising from: a) solubilization or reduced MTT in the detergent micelles or phospholipid vesicles which favors the redox reaction occurring in the aqueous fase, and b) changes in the spectral properties of reduced MTT in aqueous and lipid-like media.  相似文献   

9.
d-Glucose dehydrogenase purified from the membrane of Pseudomonas fluorescens was shown to be highly hydrophobic in amino acid analysis, with a polarity of 39.7%. The purified enzyme was inactivated upon removal of detergent by acetone treatment. The detergent-depleted enzyme was activated partially with Triton X-100, and the activity was restored almost completely upon addition of both phospholipids and Triton X-100, followed by sonication. The purified enzyme, in spite of being a single polypeptide dehydrogenase, directly reduced not only short-chain ubiquinone but also long-chain homologs. It should be noted that coenzyme Q-6 or Q-9 incorporated in phospholipid vesicles was efficiently reduced with the enzyme. These results show that, in the cytoplasmic membrane of Pseudomonas fluorescens, the glucose dehydrogenase may be linked to an electron transport chain via ubiquinone.  相似文献   

10.
The sn-glycerol-3-phosphate (glycerol-P) acyltransferase of Escherichia coli cytoplasmic membrane was purified in Triton X-100 (Green, P. R., Merrill, A. H., Jr., and Bell, R. M. (1981) J. Biol. Chem. 256, 11151-11159) and incorporated into mixed micelles containing Triton X-100, phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and beta-octyl glucoside. Enzyme activity was quantitatively reconstituted from the mixed micelle into single-walled phospholipid vesicles by chromatography over Sephadex G-50. Activity coeluted with vesicles of 90-nm average diameter on columns of Sepharose CL-4B and Sephacryl S-1000. These vesicles contained less than 2 Triton X-100 and 5 beta-octyl glucoside molecules/100 phospholipid molecules. Calculations suggested that up to eight 91,260-dalton glycerol-P acyltransferase polypeptides were incorporated per 90-nm vesicle. The pH dependence and apparent Km values for glycerol-P and palmitoyl-CoA of the glycerol-P acyltransferase reconstituted into vesicles were similar to those observed upon reconstitution by mixing of the enzyme in Triton X-100 with a 20-fold molar excess of sonicated phosphatidylethanolamine:phosphatidylglycerol:cardiolipin, 6:1:1. The integrity of vesicles containing glycerol-P acyltransferase was established by trapping 5,5'-dithiobis-(2-nitrobenzoic acid). Chymotrypsin inactivated greater than 95% of the glycerol-P acyltransferase in intact vesicles and cleaved the 91,260-dalton polypeptide into several vesicle-bound and several released peptides, indicating that critical domains of the enzyme are accessible in intact vesicles. Trinitrobenzene sulfonate and 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene caused greater than 90% loss of glycerol-P acyltransferase in vesicles. Disruption of vesicles with Triton X-100 did not reveal significant latent activity. These data strongly suggest that the glycerol-P acyltransferase was reconstituted asymmetrically into the vesicles with its active site facing outward.  相似文献   

11.
In low-phosphorus (P) marine systems, phytoplankton replace membrane phospholipids with non-phosphorus lipids, but it is not known how rapidly this substitution occurs. Here, when cells of the model diatom Thalassiosira pseudonana were transferred from P-replete medium to P-free medium, the phospholipid content of the cells rapidly declined within 48 h from 45±0.9 to 21±4.5% of the total membrane lipids; the difference was made up by non-phosphorus lipids. Conversely, when P-limited T. pseudonana were resupplied with P, cells reduced the percentage of their total membrane lipids contributed by a non-phosphorus lipid from 43±1.5 to 7.3±0.9% within 24 h, whereas the contribution by phospholipids rose from 2.2±0.1 to 44±3%. This dynamic phospholipid reservoir contained sufficient P to synthesize multiple haploid genomes, suggesting that phospholipid turnover could be an important P source for cells. Field observations of phytoplankton lipid content may thus reflect short-term changes in P supply and cellular physiology, rather than simply long-term adjustment to the environment.  相似文献   

12.
Plasma membrane was isolated in a uniform population and with a high purity from chilling-sensitive etiolated young seedlings of Vigna radiata (mung bean) utilizing an aqueous two polymer phase separation system and subsequent sucrose density gradient. The isolated plasma membrane was associated with vanadate-sensitive and KNO3-insensitive ATPase. The ATPase has high specificities both for substrate and Mg2+ ion with optimum pH at 6.5. It was slightly stimulated by monovalent anions, especially Cl. Proton ionophores such as gramicidin D and carbonyl cyanide p-trifluoromethoxyphenylhydrazone did not stimulate the enzyme activity. The ATPase is apparently latent and highly stimulated by the addition of detergents such as Triton X-100. A maximum stimulation was achieved by the addition of 0.02% Triton X-100. After treatment with proteinase K in an isotonic buffer solution, the enzyme activity was less affected, whereas the peptides were specifically digested. Based on these facts, the isolated plasma membrane vesicles appear to be tightly sealed and in a right-side-out orientation. The plasma membrane ATPase had two inflection points at higher (18.9°C) and lower (6.7°C) temperatures on the Arrhenius plots of the activity. The lower inflection temperature apparently coincided with that of the anisotropy parameter of embedded 1,6-diphenyl-1,3,5-hexatriene, indicating that the membrane bound ATPase activity was affected by a phase transition of membrane lipids and/or temperature-dependent conformational changes in the enzyme molecules per se. Considering the fact that the plant material used here is highly sensitive to chilling temperatures and injured severely by exposure to temperatures below 5°C for a relatively short period, the thermotropic properties of membrane molecules are considered to be involved in the mechanism of chilling injury.  相似文献   

13.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes.  相似文献   

14.
A potato (Solanum tuberosum) phospholipid acyl-hydrolase, which - in the pH range 7.5 to 8.5—is at least 10,000 times more effective with phospholipids than with galactolipids, has been purified and characterized. It is a soluble enzyme readily distinguished from a neutral lipid lipase and a third lipid acyl-hydrolase which, while acting on phospholipid, shows a decided preference for glyceryl monoolein. The phospholipase in question has a pH optimum of 8.5, is stimulated by Ca2+ at pH above 7.5 and inhibited by Ca2+ at lower pH, is not dependent on detergents although stimulated by Triton X-100 to a moderate extent, and remains very active at temperatures close to zero. The phospholipids of intact potato mitochondria are highly susceptible to degradation by potato phospholipase, and it is suggested that this enzyme is involved in the extensive lipid breakdown which occurs in fresh potato slices following cutting, and in the deterioration of mitochondria during their preparation and aging.  相似文献   

15.
Regulation of k influx in barley : effects of low temperature   总被引:4,自引:2,他引:2       下载免费PDF全文
The proteinases present in dark-germinated flax seeds (Linum usitatissimum) were studied as a function of germination at 25°C. A majority of activity was present in basic proteinases with an acidic pH optimum and a temperature optimum of 45°C in the digestion of hemoglobin. Electrophoresis in a sodium dodecyl sulfate-polyacrylamide mixture which had been polymerized with gelatin was used to separate proteins in extracts of seedlings. Subsequent activation of proteinases with Triton X-100 and resultant digestion of gelatin proved to be very reproducible and afforded detection and good quantification of various proteinase zones. An ethylenediaminetetraacetate-sensitive proteinase zone, P4 (about 60,000 daltons), appeared at day 3 after imbibition and attained maximum activity at day 4. This correlates with a rapid loss in vivo of the glyoxysomal enzyme, isocitrate lyase (EC 4.1.3.1). Ethylenediaminetetraacetate also slowed the loss of isocitrate lyase activity in extracts of 4-day seedlings in a dose-dependent manner. The addition of leupeptin, α-tolylsulfonyl fluoride, Pepstatin A, p-chloromercuribenzoate, or 1,10-phenanthroline prior to, during, or after exchange of Triton X-100 for sodium dodecyl sulfate had almost no inhibitory effect upon proteinases in 4-day seedlings.  相似文献   

16.
Bovine enterokinase was incorporated into vesicles reconstituted from a soybean phospholipid mixture. A thin film hydration procedure (MacDonald, R. I., and MacDonald, R. C. (1975) J. Biol. Chem. 250, 9206-9214) produced vesicles with 40% of the enterokinase activity bound in the membrane. The highest incorporation was observed when cholesterol or dimyristoylphosphatidylethanolamine was added to the soybean phospholipids. Crude and highly purified enterokinase preparations were incorporated to the same extent suggesting that other membrane components were not required for a successful reconstitution. The properties of enterokinase in phospholipid vesicles were compared with those of alkaline phosphatase, which was also added to the reconstitution system, and with the enzyme activities present in vesicles prepared from brush-border membranes. The enzyme activities were not released by solutions of high ionic strength and remained associated with the phospholipid vesicles on gel filtration, ultracentrifugation, and sucrose density centrifugation. Enterokinase and alkaline phosphatase had their active sites exposed to substrate in the brush-border membrane vesicles. In soybean phospholipid vesicles half of the active sites of both enzymes were on the outside, since release of the enzyme with Triton X-100 almost doubled the units of enzyme present. Incubation of the soybean phospholipid and brush-border membrane vesicles with papain released the exposed molecules of enterokinase. The released enzyme molecules were fully active but could not be reincorporated into phospholipid vesicles. This suggests that the structure imbedded in the lipid bilayer was essential for a successful reconstitution. We conclude that the reconstituted soybean phospholipid vesicles are a suitable membrane system for the further study of membrane-bound enterokinase.  相似文献   

17.
Extraction of membranes of Lactobacillus plantarum with Triton X-100/glycerol solubilized up to 80% of the undecaprenol kinase activity. Fractionation of the extract by gel chromatography separated endogenous phospholipid from the enzyme but simultaneously inactivated the enzyme. The kinase was reactivated by reconstitution with various synthetic phosphatidylcholines and purified L. plantarum phospholipids. Ditetradecanoylphosphatidylcholine and lysylphosphatidylglycerol were the best activators. Furthermore, the optimal environment for enzyme stimulation was provided by different defined molar ratios of Triton X-100/phospholipid. The ratios for the phospholipids tested ranged from 1.25 to 6.3. Similar substrate specificity and kinetic constants were observed for both the solubilized and reconstituted enzymes suggesting that no fundamental changes in the enzyme activity occurred during the delipidation-reconstitution process.  相似文献   

18.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

19.
Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear. Tryptophanyl fluorescence quenching by acrylamide shows that a significant fraction of the Trp residues sensing the quencher become less readily available to it in the absence of surfactant. The temperature dependence of enzyme activity (expressed in the form of Arrhenius plots) is also different in the presence and absence of detergent. The effects of surfactant removal do not appear to be readily reversible upon readdition of Triton X-100.  相似文献   

20.
—Highly purified fractions of synaptic vesicles were prepared from rat cerebrum or cerebral cortex by density gradient centrifugation. Treatment of synaptic vesicle fractions by autoincubation, freeze-thawing and sonication in an isotonic alkaline-salt medium or in 0·1-0·3% (v/v) Triton X-100 released increasing quantities of synaptic vesicle protein and phospholipid into solution. When the soluble synaptic vesicle proteins were extracted with 0·1% (v/v) Triton X-100, the insoluble residue consisted mostly of 5–8 nm-thick membranes resembling the limiting membranes of intact synaptic vesicles. This finding, together with other considerations, suggested that the soluble proteins and accompanying phospholipids originated from the interior of the synaptic vesicles. A 0·3% (v/v) Triton X-100 extract of synaptic vesicle was fractionated by ultracentrifugal flotation and dialysis into three lipoprotein fractions: a low density lipoprotein (d < 1·21 g/ml), a high density lipoprotein (d = 1·21–1·35 g/ml) and a very high density lipoprotein (d > 1·35 g/ml). The phospholipid contents of the low, high and very high density lipoprotein fractions were 0·74, 0·38 and 0·20 mg/mg of protein, respectively. All three apolipoproteins had a high ratio of acidic to basic, and of polar to nonpolar, amino acids, and were rich in glycine, alanine and serine. Polyacrylamide gel electrophoresis of the alkaline-salt and Triton X-100 extracts of synaptic vesicles at pH 8·8 resolved a single anionic component which stained for protein, lipid (Sudan black B; iodine) and anionic groups (acridine orange). Polyacrylamide gel electrophoresis of synaptic vesicle extracts at pH 2·7 in 5 m urea and 0·25% (v/v) Triton X-100 resolved about 20 protein components. However, the protein profiles of electropherograms of the Triton X-100 and alkaline-salt extracts differed in certain respects, suggesting that these media to some extent solubilized different proteins. However, most of the protein bands in electropherograms of the Triton X-100 and alkaline-salt extracts also stained for lipid and anionic groups. In addition, two lipoprotein components in the alkaline-salt extract and four in the Triton X-100 extract contained carbohydrate. Isoelectric focusing of synaptic vesicle extracts resolved 6–8 protein fractions. The major fraction in Triton X-100 and alkaline-salt extracts had an apparent isoelectric point of approximately 4·2 and contained 0·24 mg of phospholipid per mg of protein. Soluble synaptic vesicle proteins released by incubating, freeze-thawing and sonicating in the alkaline-salt medium, and protein fractions of the latter obtained by electrofocusing had an absorption maximum of 260–265 nm which was enhanced in a cold 0·5 n perchloric acid extract, an observation suggesting the presence of a bound nucleotide. These findings demonstrate that rat brain synaptic vesicles contain a heterogenous array of soluble acidic lipoproteins which vary in buoyant density, lipid content, amino acid and carbohydrate composition and electrophoretic mobility in polyacrylamide gels. These acidic lipoproteins apparently comprise the bulk of the macromolecular contents of synaptic vesicles and probably serve as ‘carrier’ proteins for the binding and sequestration of the neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号