首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F M Marassi  P M Macdonald 《Biochemistry》1992,31(41):10031-10036
Deuterium nuclear magnetic resonance (2H NMR) spectroscopy was used to investigate the response of the phosphatidylcholine headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) to changes in surface electrostatic charge in membranes consisting of ternary mixtures of lipids. DMPC was deuterated at the choline alpha- and beta-methylene segments. The membrane surface charge was manipulated by the simultaneous addition of cationic didodecyldimethylammonium bromide (DDAB) and anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) to neutral DMPC. Addition of increasing amounts of DDAB caused a progressive decrease (increase) in the 2H NMR quadrupole splitting from DMPC-alpha-d2 (DMPC-beta-d2). Addition of increasing amounts of DMPG caused a progressive increase (decrease) in the quadrupole splitting from DMPC-alpha-d2 (DMPC-beta-d2). Qualitatively, the 2H NMR quadrupole splitting charge response exhibited the same main features for ternary mixtures of DDAB/DMPG/DMPC and binary mixtures of DDAB/DMPC or DMPG/DMPC. Quantitatively, however, the 2H NMR quadrupole splittings obtained from ternary mixtures did not coincide with those obtained from binary mixtures of nominally identical surface charge densities. Hence, the quadrupole splitting did not respond directly to the net membrane surface charge. Instead, the quadrupole splitting measured for a given ternary lipid composition could be reproduced by summing the individual effects of the charged lipids in binary mixtures, weighted according to their appropriate mole fractions.  相似文献   

2.
H Akutsu  T Nagamori 《Biochemistry》1991,30(18):4510-4516
The conformation of the polar head group of phosphatidylcholine in a bilayer in the liquid-crystalline state was deduced by analyzing the deuterium quadrupole splittings of the choline group and the phosphorus chemical shift anisotropy of the phosphate group in combination with the restriction of the choline conformation determined in laser Raman studies. The latter efficiently reduced the number of candidates for the actual conformation. A family of conformations was obtained for both the dynamic-structure and rigid-structure models, respectively. The polar head group is oriented roughly parallel to the membrane surface in both models. Furthermore, they are close to conformation A of the crystal structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The dynamic-structure model was concluded to be more reasonable in view of the fact that the polar head-group structures in most crystals comprise two conformations, which are nearly mirror images of each other. Conformational analysis was also carried out for the polar head group in the presence of multivalent cations. A possible conformational change of the polar head group induced by cations is discussed in the light of the present results.  相似文献   

3.
F M Marassi  P M Macdonald 《Biochemistry》1991,30(43):10558-10566
The response to membrane surface charge of the glycerol headgroup of dimyristoyl-phosphatidylglycerol (DMPG) was investigated via deuterium and phosphorus-31 nuclear magnetic resonance spectroscopy. The membrane surface charge was manipulated by adding various amounts of neutral dimyristoylphosphatidylcholine (DMPC) and/or positively charged didodecyldimethylammonium bromide (DDAB) to the negatively charged DMPG, selectively deuterated at the alpha and beta segments of its glycerol headgroup. The deuterium and phosphorus-31 nuclear magnetic resonance spectra were all characteristic of random dispersions of liquid-crystalline lipids in a bilayer configuration. Differential scanning calorimetry showed that all mixtures investigated exhibited gel to liquid-crystalline phase transitions below 35 degrees C. Measurements of the deuterium quadrupole splitting and of the phosphorus-31 chemical shift anisotropy lead to the following observations. (1) Dilution of the negative surface charge density by the addition of DMPC had little effect on the quadrupole splitting from either alpha- or beta-deuterated DMPG. (2) Direct cancellation of the negative surface charge density by addition of DDAB led to a progressive decrease in the quadrupole splitting measured from alpha-deuterated DMPG, while the quadrupole splitting measured from beta-deuterated DMPG increased. For alpha-deuterated DMPG addition of 0.3 mole fraction of DDAB resulted in the appearance of two distinct quadrupole splittings. No such effect was observed for beta-deuterated DMPG.  相似文献   

4.
The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure.  相似文献   

5.
Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions.  相似文献   

6.
Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of a cationic amphiphilic peptide with pure DMPC membranes and with mixed bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS). The choline and serine headgroups were selectively deuteriated at the alpha and beta positions. The amphiphilic peptide, with 20 leucine residues in the hydrophobic core and two cationic hydrophilic lysine residues at each end, spanned the lipid bilayer. Although 2H NMR experiments using DMPC with perdeuteriated fatty acyl chains showed that the average order parameter of the hydrophobic region was not significantly modified by the incorporation of the amphiphilic peptide, for either DMPC or DMPC/DMPS (5:1) bilayers, large perturbations of the quadrupolar splittings of the choline and serine headgroups were observed. The results obtained with the DMPC headgroup suggest that the incorporation of the cationic peptide in both DMPC and DMPC/DMPS (5:1) bilayers leads to a structural perturbation directly related to the net charge on the membrane surface. The magnitude of the observed effect seems to be similar to those observed previously with other cationic molecules [Seelig, J., MacDonald, P.M., & Scherer, P.G. (1987) Biochemistry 26, 7535-7541]. Two of the three quadrupolar splittings of the PS headgroup exhibited large variations in the presence of the amphiphilic peptide, while the third one remained unchanged. Our data have led us to propose a model describing the influence of membrane surface charges on headgroup conformation. In this model, the surface charge is represented as a uniform charge distribution. The electric field due to the charges produces a torque which rotates the polar headgroups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
C E Dempsey  N J Ryba  A Watts 《Biochemistry》1986,25(8):2180-2187
Band 3, isolated from human erythrocytes, has been reconstituted into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) deuterated in the terminal methyl groups of the choline head group. By use of Triton X-100 for selective extraction and purification of band 3 and then cholate for subsequent solubilization with the lipid, a number of reconstituted complexes were produced by exhaustive detergent dialysis with protein:lipid weight ratios of between 0.32:1 and 1.25:1. Electron micrographs of negatively stained complexes showed that this method produced large vesicles of greater than 300-nm diameter. Deuterium nuclear magnetic resonance (NMR) spectra from the choline methyl deuterons in bilayer lipid above the liquid-crystal-gel phase transition temperature were shown to change systematically with increasing concentrations of band 3 in the bilayers. The measured quadrupole splittings, taken as the separation of the turning points in the recorded spectra, decreased from a value of 1.28 kHz for pure lipid to 0.98 kHz for bilayers with a protein:lipid ratio of 1.25:1 at 26 degrees C. At 35 degrees C, a more pronounced decrease in the quadrupole splittings was measured. The data from the complexes with protein:lipid ratios up to 0.7:1 (w/w) obey the mathematical treatment for a rapid two-site exchange between lipids at the protein-lipid interface and the bulk lipid phase. The temperature dependence of the measured quadrupole splitting with respect to the protein:lipid ratio indicates that the amount of lipid at the protein-lipid interface increases with increasing temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
N J Ryba  C E Dempsey  A Watts 《Biochemistry》1986,25(17):4818-4825
Rhodopsin, isolated from bovine retinal rod outer segment disk membranes, has been reconstituted into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine which was deuterated in the terminal methyl groups of the choline polar head group. By use of a mixed detergent system of cholate and octyl glucoside to solubilize the phospholipid and rhodopsin, 15 membrane complexes of predetermined phospholipid to rhodopsin mole ratios of between 350:1 and 65:1 have been produced by exhaustive dialysis and studied by a variety of techniques. Electron micrographs of replicas from freeze-fractured membrane complexes showed that the majority of the lipid, for all rhodopsin:phospholipid ratios, was contained in large bilayer vesicles with diameters in excess of 400 nm. Complexes produced with rhodopsin from frozen retina produced an absorption maximum at 478 nm after photobleaching whereas rhodopsin from fresh retina could be bleached more completely to an absorption maximum at 380 nm. Deuterium nuclear magnetic resonance (NMR) spectra from the lipid head groups of bilayers above the gel to liquid-crystalline phase transition temperature were shown to be sensitive in a systematic way to the presence of rhodopsin which could be bleached to 380 nm. The measured quadrupole splittings, taken as the separation of the turning points of the recorded NMR spectra, decreased from a value of 1.28 kHz for protein-free bilayers to approximately 0.40 kHz for bilayers containing 65 molecules of phospholipid for each rhodopsin at 32 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the "magic-angle" sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp2) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C2) axis. 2H NMR spectra of [2,4,6,8-2H4]desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of approximately 0-2 and approximately 20 kHz, indicating an approximate magic-angle orientation of the C2-2H(1H) and C8-2H(1H) vectors with respect to an axis of motional averaging, in accord with the 13C NMR results. Selective deuteration of imipramine confirms these ideas. Spectra of digalactosyl diglyceride [primarily 1,2-di[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl ]-3- (alpha-D-galactopyranosyl-1-6-beta-D-galactopyranosyl)-sn-glycerol]-H2O (in the L alpha phase) show a large differential line broadening for C9 but a reduced effect for C10, consistent with the results of 2H NMR of specifically 2H-labeled phospholipids [Seelig, J., & Waespe-Saracevic, N. (1978) Biochemistry 17, 3310-3315].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Molecular and conformational ordering in aqueous multilamellar suspensions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) have been examined by deuterium nuclear magnetic resonance (2H NMR) in the liquid crystalline (L alpha) phase. Motionally averaged quadrupolar splittings vQ from six sites in the vicinity of the glycerol backbone have been analyzed by a molecular frame and order matrix approach in which the usual assumption of a freely-rotating molecule is not invoked. By assuming a relatively rigid glycerol backbone region, the six vQ values are found to be consistent with a conformation of the glycerol backbone that is almost identical to that of one of the two structures in crystalline DMPC dihydrate (Pearson, R. H., and I. Pascher, 1979, Nature (Lond.) 281: 499-501). The orientation of the most-ordered axis of the DMPC molecule is found to be tilted at an angle of 27 +/- 2 degrees with respect to the long axis of the sn-1 chain in its extended all trans conformation. The ordering of the most ordered molecular axis with respect to the bilayer normal is expressed by an order parameter of Szz approximately equal to 0.6 +/- 0.1, consistent with values in analogous thermotropic liquid crystals.  相似文献   

11.
Model membranes formed from 1,2-dihexadecyl-, 1,2-dipalmitoyl-, 1,2-ditetradecyl- or 1,2-dimyristoyl-rac-glycero-3-phosphocholine, deuterium-labelled at choline groups, in an excess of water were compared using 2H-NMR spectroscopy. The dynamics and conformation of the labelled choline segments were estimated based on spin-lattice relaxation time and residual quadrupole splittings. The trimethylammonium group of dialkyl phosphatidylcholine was shown to be more distant from the bilayer surface as compared with that of the diacyl analogues.  相似文献   

12.
A Raman band assigned to the 'totally' symmetric stretching vibration of the choline C-N bonds is relatively strong and sensitive to the conformation of the choline backbone (Akutsu, H. (1981) Biochemistry 20, 7359-7366). By monitoring this Raman band, the influence of Eu3+, La3+, Ca2+ and a local anesthetic, dibucaine, on the conformation of the choline group was examined for the bilayers of dipalmitoylphosphatidylcholine and those of deuterated one at the choline methyl group (-N(C2H3)3). NMR lanthanide-shift studies proposed that the interaction with metal ions induces a conformational change from the gauche to the trans form in the O-C-C-N+ backbone of the choline group. However, present Raman work clearly showed that neither metal ions nor anesthetics induce such a conformational change. Therefore, a structural change in the polar group detected by 2H-NMR on addition of metal ions should not include a significant conformational change in the choline group as well. Deuterated phosphatidylcholine used here was proved to be more suitable for the direct detection of the amount of the trans conformation by Raman spectroscopy than the nondeuterated one. The spectra of the deuterated compound in the gel and liquid-crystalline states confirmed that the trans conformation of the choline group does not appear at all in both states.  相似文献   

13.
The binding of the charged form of two local anesthetics, dibucaine and etidocaine, to bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was measured simultaneously with ultraviolet spectroscopy and deuterium magnetic resonance. Because of their amphiphilic molecular structure, both drugs intercalate between the lipid molecules, increasing the surface area and imparting a positive electric charge onto the membrane. The ultraviolet (UV) binding isotherms were therefore analyzed in terms of a model which specifically took into account the bilayer expansion as well as the charge-induced concentration variations near the membrane surface. By formulating a quantitative expression for the change in surface area upon drug intercalation and combining it with the Gouy-Chapman theory, the binding of charged dibucaine and etidocaine to the lipid membrane was best described by a partition equilibrium, with surface partition coefficients of 660 +/- 80 M-1 and 11 +/- 2 M-1 for dibucaine and etidocaine, respectively (pH 5.5, 0.1 M NaCl/50 mM buffer). Deuterium magnetic resonance demonstrated further that the binding of drug changed the head-group conformation of the lipid molecules. Invoking the intercalation model, a linear variation of the deuterium quadrupole splittings of the choline segments with the surface charge density was observed, suggesting that the phosphocholine head-group may act as a 'molecular electrometer' with respect to surface charges.  相似文献   

14.
The effect of hydration on the structure and molecular orientation of multibilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cast on a germanium plate, was studied by means of polarized Fourier transform infrared (FT-IR)-attenuated total reflection spectroscopy. Compared with the dry state, the antisymmetric and symmetric CH2 stretching bands of fully hydrated DMPC in the liquid-crystalline state were shifted to the higher frequency side, indicating the increase in the number of the gauche conformers. However, the dichroism of these bands revealed that the hydrocarbon chains of DMPC were still ordered and titled. The absorption bands of the glycerol ester, phosphoryl, and choline groups were broadened upon hydration, suggesting the activation of the librational or torsional motion. Furthermore, the dichroism of the polar head group bands of DMPC indicated that these groups retained a slight orientation even in the fully hydrated and fluid multibilayers.  相似文献   

15.
With molecular dynamics simulations of phospholipid membranes becoming a reality, there is a growing need for experiments that provide the molecular details necessary to test these computational results. Pyridine is used here to explore the interaction of planar aromatic groups with the water-lipid interface of membranes. It is shown by magic angle spinning 13C nuclear magnetic resonance (NMR) to bind between the glycerol and choline groups of dimyristoylphosphatidylcholine (DMPC) liposomes. The axial pattern for the 31P NMR spectrum of DMPC liposomes is preserved even with more than half of the interfacial sites occupied, indicating that pyridine does not disrupt the lamellar phase of this lipid. 2H NMR experiments of liposomes in deuterium oxide demonstrate that pyridine might promote greater penetration of water into restricted regions in the interface. Magnetically oriented DMPC/surfactant micelles were investigated as a means for improving resolution and sensitivity in NMR studies of species bound to bilayers. The quadrupolar splittings in the 2H NMR spectra of d5-pyridine in DMPC liposomes and magnetically oriented DMPC/Trixon X-100 micelles indicate a common bound state for the two bilayer systems. The well resolved quadrupolar splittings of d5-pyridine in oriented micelles were used to establish the tilt of the pyridine ring relative to the bilayer plane.  相似文献   

16.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

17.
Using solid-state magic angle spinning nuclear magnetic resonance (NMR) techniques, we have obtained two-dimensional (2D), 1H/13C chemical shift-correlated spectra of liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers in 30 wt% PO4/D2O buffer. Linewidths in both the 13C and the 1H dimensions were less than 0.3 ppm wide. The 2D spectrum consists of chemical shift correlations between all resolvable, directly bonded 13C-1H pairs and exhibits considerably greater spectral dispersion than either ID 1H or 13C MAS spectra. This approach promises to be an important tool in structural studies of biological membranes.  相似文献   

18.
Li GC  Wang DR  Chen W  Tzou DL 《Steroids》2012,77(3):185-192
Solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy has been applied to 17β-estradiol (E2) and 17α-estradiol (E2α), to analyze the steroidal ring conformations of the two isomers in the absence and presence of lipids at the atomic level. In the absence of lipid, the high-resolution (13)C NMR signals of E2 in a powdered form show only singlet patterns, suggesting a single ring conformation. In contrast, the (13)C signals of E2α reveal multiplet patterns with splittings of 20-300Hz, implying multiple ring conformations. In the presence of a mimic of the lipid environment, made by mixing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) in a molar ratio 3:1, E2 and E2α revealed multiplet patterns different from those seen in the absence of lipids, indicating that the two isomers adopt multiple conformations in the lipid environment. In this work, on the basis of chemical shift isotropy and anisotropy analysis, we demonstrated that E2 and E2α prefer to adopt multiple steroidal ring conformations in the presence of a lipid environment, distinct from that observed in solution phase and powdered form.  相似文献   

19.
P G Scherer  J Seelig 《Biochemistry》1989,28(19):7720-7728
The influence of electric surface charges on the polar headgroups and the hydrocarbon region of phospholipid membranes was studied by mixing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with charged amphiphiles. A positive surface charge was generated with dialkyldimethylammonium salts and a negative surface charge with dialkyl phosphates. The POPC:amphiphile ratio and hence the surface charge density could be varied over a large range since stable liquid-crystalline bilayers were obtained even for the pure amphiphiles in water. POPC was selectively deuterated at both methylene segments of the choline moiety and at the cis double bond of the oleic acyl chain. Additional experiments were carried out with 1,2-dipalmitoyl-rac-glycero-3-phosphocholine labeled at the C-2 position of the glycerol backbone. Deuterium, phosphorus, and nitrogen-14 nuclear magnetic resonance (NMR) spectra were recorded for liquid-crystalline bilayers with varying concentrations of amphiphiles. Although the hydrocarbon region and the glycerol backbone were not significantly influenced by the addition of amphiphiles, very large perturbations of the phosphocholine headgroup were observed. Qualitatively, these results were similar to those observed previously with other cationic and anionic molecules and suggest that the electric surface charge is the essential driving force in changing the phospholipid headgroup orientation and conformation. While the P-N dipole is approximately parallel to the membrane surface in the pure phospholipid membrane, the addition of a positively charged amphiphile or the binding of cationic molecules moves the N+ end of the dipole toward the water phase, changing the orientation of the phosphate segment by more than 30 degrees at the highest amphiphile concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
2H NMR spectra have been observed for several selectively deuterated phospholipid and fatty acid probes intercalated in the liquid crystalline phase of egg phosphatidylcholine in aqueous dispersion. For unsonicated lamellar dispersions and planar multibilayers, quadrupole splittings may be observed which lead directly to a value for the order parameter for the carbon-deuterium bond. Sonicated dispersions yield high-resolution spectra, from which spin-lattice relaxation rates and correlation times for rotational diffusion can be obtained. The presence of cholesterol in the dispersion has no effect on the quadrupole splittings and relaxation rates for 2H in the choline methyl groups, in contrast to its profound effect on the spectra for 2H in the hydrocarbon chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号