首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies by our group showed that infection of human and rodent cells by human adenovirus type 5 (Ad5) results in the induction of p53-independent apoptosis and cell death that are dependent upon transactivation of early region 4 (E4). To identify which E4 products are involved, studies were conducted with p53-deficient human SAOS-2 cells infected with various Ad5 E4 mutants. An E4orf6-deficient mutant was defective in cell killing, whereas another that expressed only E4orf6 and E4orf4 killed like wild-type virus, suggesting that E4orf6 may be responsible for cytotoxicity; however, a mutant expressing only E4orf4 induced high levels of cell death, indicating that this E4 product may also be able to induce cytotoxicity. To define the E4 cell death-inducing functions more precisely, cDNAs encoding individual E4 products were introduced into cells by DNA transfection in the absence of other Ad5 proteins. In cotransfections with a cDNA encoding firefly luciferase, enzymatic activity was high in all cases except with E4orf4, where luciferase levels were less than 20% of those in controls. In addition, drug selection of several cell types following transfection with retroviral vector DNA encoding individual E4 products as well as puromycin resistance yielded a large number of cell colonies except when E4orf4 was expressed. These data demonstrated that E4orf4 is the only E4 product capable of independent cell killing. Cell death induced by E4orf4 was due to apoptosis, as evidenced by 4′,6-diamidino-2-phenylindole (DAPI) staining of cell nuclei in E4orf4-expressing cells. Thus, although E4orf6 may play some role, these results suggested that E4orf4 may be the major E4 product responsible for induction of p53-independent apoptosis.  相似文献   

2.
Adenovirus type 2 (Ad2) early region 4 ORF4 (E4orf4) triggers a major death pathway that requires its accumulation in cellular membranes and its tyrosine phosphorylation. This program is regulated by Src family kinases and triggers a potent ZVAD (benzyloxycarbonyl-VAD)- and Bcl2-resistant cell death response in human-transformed cells. How E4orf4 deregulates Src-dependent signaling is unknown. Here we provide strong evidence that a physical interaction requiring the kinase domain of Src and the arginine-rich motif of E4orf4 is involved. The Src binding domain of E4orf4 overlaps with, but is distinct from that of the Balpha subunit of protein phosphatase 2A (PP2A-Balpha) and some E4orf4 complexes contain both PP2A and Src. Functional assays using mutant E4orf4 revealed that deregulation of Src signaling, activation of the Jun kinase pathway, and cell blebbing were all critically dependent on Src binding. In contrast, PP2A-Balpha binding per se was not required to engage the Src-dependent death pathway but was more critical for triggering a distinct death activity. Both E4orf4 death activities were manifested within a given cell population, were typified by distinct morphological features, and contributed to overall cell killing, although to different extents in various cell types. We conclude that E4orf4 binding to the Src kinase domain leads to deregulation of Src signaling and plays a crucial role in induction of the cytoplasmic death pathway. Nonetheless, both Src and PP2A enzymes are critical targets of E4orf4 that likely cooperate to trigger E4orf4-induced tumor cell killing and whose relative contributions may vary in function of the cellular background.  相似文献   

3.
Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Balpha subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Balpha-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Balpha subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing.  相似文献   

4.
The adenoviral early region 4 open reading frame 4 (E4orf4) death factor induces p53-independent apoptosis in many cell types and appears to kill selectively transformed cells. Here we show that expression of E4orf4 in transformed epithelial cells results in early caspase-independent membrane blebbing, associated with changes in the organization of focal adhesions and actin cytoskeleton. Evidence that E4orf4 can associate with and modulate Src family kinase activity, inhibiting Src-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin while increasing phosphorylation of cortactin and some other cellular proteins, is presented. Furthermore, E4orf4 dramatically inhibited the ability of FAK and c-src to cooperate in induction of tyrosine phosphorylation of cellular substrates, suggesting that E4orf4 can interfere with the formation of a signaling complex at focal adhesion sites. Consistent with a functional role for E4orf4-Src interaction, overexpression of activated c-src dramatically potentiated E4orf4-induced membrane blebbing and apoptosis, whereas kinase dead c-src constructs inhibited E4orf4 effects on cell morphology and death. Moreover treatment of E4orf4-expressing cells with PP2, a selective Src kinase inhibitor, led to inhibition of E4orf4-dependent membrane blebbing and later to a marked decrease in E4orf4-induced nuclear condensation. Taken together, these observations indicate that expression of adenovirus 2 E4orf4 can initiate caspase-independent extranuclear manifestations of apoptosis through a modulation of Src family kinases and that these are involved in signaling E4orf4-dependent apoptosis. This study also suggests that Src family kinases are likely to play a role in the cytoplasmic execution of apoptotic programs.  相似文献   

5.
Adenovirus E4orf4 protein has been shown to induce transformed cell-specific, protein phosphatase 2A-dependent, and p53-independent apoptosis. It has been further reported that the E4orf4 apoptotic pathway is caspase-independent in CHO cells. Here, we show that E4orf4 induces caspase activation in the human cell lines H1299 and 293T. Caspase activation is required for apoptosis in 293T cells, but not in H1299 cells. Dominant negative mutants of caspase-8 and the death receptor adapter protein FADD/MORT1 inhibit E4orf4-induced apoptosis in 293T cells, suggesting that E4orf4 activates the death receptor pathway. Cytochrome c is released into the cytosol in E4orf4-expressing cells, but caspase-9 is not required for induction of apoptosis. Furthermore, E4orf4 induces accumulation of reactive oxygen species (ROS) in a caspase-8- and FADD/MORT1-dependent manner, and inhibition of ROS generation by 4,5-dihydroxy-1, 3-benzene-disulfonic acid (Tiron) inhibits E4orf4-induced apoptosis. Thus, our results demonstrate that E4orf4 engages the death receptor pathway to generate at least part of the molecular events required for E4orf4-induced apoptosis.  相似文献   

6.
Adenovirus type 5 E4 open reading frame 4 (E4orf4) protein has been previously shown to counteract transactivation of the junB and c-fos genes by cyclic AMP plus E1A protein and to interact with protein phosphatase 2A (PP2A). Here, we show that the wild-type E4orf4 protein induces apoptosis in the E1A-expressing 293 cells, in NIH 3T3 cells transformed with v-Ras, and in the lung carcinoma cell line H1299. The induction of apoptosis is not accompanied by enhanced levels of p53 in 293 cells and occurs in the absence of p53 in H1299 cells, indicating involvement of a p53-independent pathway. A mutant E4orf4 protein that had lost the ability to induce apoptosis also lost its ability to bind PP2A. We suggest that E4orf4 antagonizes continuous signals to proliferate, like those given by E1A or v-Ras, and that the conflicting signals lead to the induction of cell death.  相似文献   

7.
In transformed cells, the adenovirus E4orf4 death factor works in part by inducing a Src-mediated cytoplasmic apoptotic signal leading to caspase-independent membrane blebbing and cell death. Here we show that Src-family kinases modulate E4orf4 phosphorylation on tyrosine residues. Mutation of tyrosines 26, 42, and 59 to phenylalanines inhibited Src-induced phosphorylation of E4orf4 in vivo and in vitro but had no effect on the molecular association of E4orf4 with Src. However, in contrast to wild-type E4orf4, the nonphosphorylatable E4orf4 mutant was unable to modulate Src-dependent phosphorylation and was deficient in recruiting a subset of tyrosine-phosphorylated proteins. Indeed, the Src substrates cortactin and p62dok were found to associate with wild-type E4orf4 but not with the nonphosphorylatable E4orf4. Importantly, the nonphosphorylatable mutant E4orf4 was preferentially distributed in the cell nucleus, was unable to induce membrane blebbing, and had a highly impaired killing activity. Conversely, an activated form of E4orf4 was obtained by mutation of tyrosine 42 to glutamic acid. This pseudophosphorylated mutant E4orf4 was enriched in the cytoplasm and plasma membrane, showed increased binding to phosphotyrosine-containing proteins, and induced a dramatic blebbing phenotype associated with increased cell death. Altogether, our findings strongly suggest that Src-mediated phosphorylation of adenovirus type 2 E4orf4 is critical to promoting its cytoplasmic and membrane localization and is required for the transduction of E4orf4-Src-dependent induction of membrane blebbing. We propose that E4orf4 acts in part by uncoupling Src-dependent signals to drive the formation of a signaling complex that triggers a cytoplasmic death signal.  相似文献   

8.
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.  相似文献   

9.
10.
The adenovirus type 2 Early Region 4 ORF4 (E4orf4) protein induces a caspase-independent death program in tumor cells involving changes in actin dynamics that are functionally linked to cell killing. Because an increase in myosin II-based contractility is needed for the death of E4orf4-expressing cells, we have proposed that alteration of cytoskeletal tension is part of the signals engaging the death pathway. Yet the mechanisms involved are poorly defined. Herein, we show that the Jun N-terminal kinase JNK is activated in part through a pathway involving Src, Rho, and ROCK (Rho kinase) and contributes to dysregulate adhesion dynamics and to kill cells in response to E4orf4. JNK supports the formation of atypically robust focal adhesions, which are bound to the assembly of the peculiar actomyosin network typifying E4orf4-induced cell death and which are required for driving nuclear condensation. Remarkably, the dramatic enlargement of focal adhesions, actin remodeling, and cell death all rely on paxillin phosphorylation at Ser-178, which is induced by E4orf4 in a JNK-dependent way. Furthermore, we found that Ser-178-paxillin phosphorylation is necessary to decrease adhesion turnover and to enhance the time residency of paxillin at focal adhesions, promoting its recruitment from an internal pool. Our results indicate that perturbation of tensional homeostasis by E4orf4 involves JNK-regulated changes in paxillin adhesion dynamics that are required to engage the death pathway. Moreover, our findings support a role for JNK-mediated paxillin phosphorylation in adhesion growth and stabilization during tension signaling.  相似文献   

11.
Adenovirus E4orf4 (early region 4 open reading frame 4) protein induces protein phosphatase 2A-dependent non-classical apoptosis in mammalian cells and irreversible growth arrest in Saccharomyces cerevisiae. Oncogenic transformation sensitizes cells to E4orf4-induced cell death. To uncover additional components of the E4orf4 network required for induction of its unique mode of apoptosis, we used yeast genetics to select gene deletions conferring resistance to E4orf4. Deletion of YND1, encoding a yeast Golgi apyrase, conferred partial resistance to E4orf4. However, Ynd1p apyrase activity was not required for E4orf4-induced toxicity. Ynd1p and Cdc55p, the yeast protein phosphatase 2A-B subunit, contributed additively to E4orf4-induced toxicity. Furthermore, concomitant overexpression of one and deletion of the other was detrimental to yeast growth, demonstrating a functional interaction between the two proteins. YND1 and CDC55 also interacted genetically with CDC20 and CDH1/HCT1, encoding activating subunits of the anaphase-promoting complex/cyclosome. In addition to their functional interaction, Ynd1p and Cdc55p interacted physically, and this interaction was disrupted by E4orf4, which remained associated with both proteins. The results suggested that Ynd1p and Cdc55p share a common downstream target whose balanced modulation by the two E4orf4 partners is crucial to viability. Disruption of this balance by E4orf4 may lead to cell death. NTPDase-4/Lalp70/UDPase, the closest mammalian homologue of Ynd1p, associated with E4orf4 in mammalian cells, suggesting that the results in yeast are relevant to the mammalian system.  相似文献   

12.
Induction of apoptosis by adenovirus E4orf4 protein   总被引:2,自引:0,他引:2  
Adenovirus E4orf4 protein is a multifunctional viral regulator that induces p53-independent apoptosis in transformed cells, but not in normal cells. E4orf4-induced apoptosis can occur without activation of known caspases, although E4orf4 induces caspase activity in some cell lines. The interaction of E4orf4 with a specific subpopulation of protein phosphatase 2A (PP2A) molecules that contain B subunits, but not with those that contain B subunits, is required for induction of apoptosis. This review suggests the potential use of E4orf4 in cancer therapy, and discusses whether E4orf4-induced apoptosis plays a role in the viral life cycle. Future research directions are also highlighted.  相似文献   

13.
The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.  相似文献   

14.
15.
The adenovirus early region 4 ORF4 protein (E4orf4) triggers a novel death program that bypasses classical apoptotic pathways in human cancer cells. Deregulation of the cell cytoskeleton is a hallmark of E4orf4 killing that relies on Src family kinases and E4orf4 phosphorylation. However, the cytoskeletal targets of E4orf4 and their role in the death process are unknown. Here, we show that E4orf4 translocates to cytoplasmic sites and triggers the assembly of a peculiar juxtanuclear actin-myosin network that drives polarized blebbing and nuclear shrinkage. We found that E4orf4 activates the myosin II motor and triggers de novo actin polymerization in the perinuclear region, promoting endosomes recruitment to the sites of actin assembly. E4orf4-induced actin dynamics requires interaction with Src family kinases and involves a spatial regulation of the Rho GTPases pathways Cdc42/N-Wasp, RhoA/Rho kinase, and Rac1, which make distinct contributions. Remarkably, activation of the Rho GTPases is required for induction of apoptotic-like cell death. Furthermore, inhibition of actin dynamics per se dramatically impairs E4orf4 killing. This work provides strong support for a causal role for endosome-associated actin dynamics in E4orf4 killing and in the regulation of cancer cell fate.  相似文献   

16.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9.The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.  相似文献   

17.
The adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin. Obstruction of SNF2h activity inhibits E4orf4-induced cell death, whereas knockdown of Acf1 results in enhanced E4orf4-induced toxicity in both mammalian and yeast cells, and Acf1 overexpression inhibits E4orf4's ability to downregulate early adenovirus gene expression in the context of viral infection. Knockdown of the Acf1 homolog, WSTF, inhibits E4orf4-induced cell death. Based on these results we suggest that the E4orf4-PP2A complex inhibits ACF and facilitates enhanced chromatin-remodeling activities of other SNF2h-containing complexes, such as WSTF-SNF2h. The resulting switch in chromatin remodeling determines life versus death decisions and contributes to E4orf4 functions during adenovirus infection.  相似文献   

18.
Li Y  Wei H  Hsieh TC  Pallas DC 《Journal of virology》2008,82(7):3612-3623
The adenovirus early region 4 open reading frame 4 (E4orf4) protein specifically induces p53-independent cell death of transformed but not normal human cells, suggesting that elucidation of its mechanism may provide important new avenues for cancer therapy. Wild-type E4orf4 and mutants that retain cancer cell toxicity also induce growth inhibition in Saccharomyces cerevisiae, which provides a genetically tractable system for studying E4orf4 function. Interaction with the protein phosphatase 2A (PP2A) B regulatory subunit is required for E4orf4's effects, suggesting that E4orf4 may function by regulating B subunit-containing heterotrimeric PP2A holoenzymes (PP2A(BAC)), which consist of a B subunit complexed with the PP2A structural (A) and catalytic (C) subunits. However, it is not known whether E4orf4-induced growth inhibition requires interaction with the PP2A C subunit or whether E4orf4 might have PP2A B subunit-dependent effects that are independent of PP2A(BAC) holoenzyme formation. To test these possibilities in S. cerevisiae, we disrupted the stable formation of PP2A(BAC) heterotrimers and thus E4orf4/C subunit association by PP2A C subunit point mutations or by deletion of the gene for the PP2A methyltransferase, Ppm1p, and assayed for effects on E4orf4-induced growth inhibition. Our results support a model in which E4orf4 mediates growth inhibition and cell killing both through PP2A(BAC) heterotrimers and through a B regulatory subunit-dependent pathway(s) that is independent of stable complex formation with the PP2A C subunit. They also indicate that Ppm1p has a function other than regulating the assembly of PP2A heterotrimers and suggest that selective PP2A trimer inhibitors and PP6 inhibitors may be useful as adjuvant anticancer therapies.  相似文献   

19.
Apoptosis Mediated by a Novel Leucine Zipper Protein Par-4   总被引:4,自引:0,他引:4  
The prostate apoptosis response-4 (par-4) gene was isolated in a differential screen for immediate-early genes that are up-regulated during apoptosis of prostate cancer cells. Unlike most other immediate-early genes, par-4 is exclusively induced during apoptosis. The expression or induction of par-4 is not restricted to prostatic cells. The par-4 gene is widely expressed in diverse normal tissues and cell types and conserved during evolution. Par-4 protein contains a leucine zipper domain that is essential for sensitization of cells to apoptosis. Functional studies indicate that par-4 expression is necessary to induce apoptosis. Par-4 protein may induce apoptosis by a p53-independent pathway that involves cytoplasmic inactivation of atypical protein kinase C isoforms resulting in down-regulation of MAP kinase activity and an up-regulation of p38 kinase activity. However, Par-4 is detected in the cytoplasm and in the nucleus, suggesting both cytoplasmic and nuclear roles for the pro-apoptotic protein. Interestingly, Par-4 is predicted to contain a death domain homologous to that of Fas or TRADD, and may therefore trigger a death cascade analogous to that of the death domain proteins. Par-4-dependent apoptosis is abrogated by Bcl-2 and by caspase inhibitors. Identification of the components of the p53-independent apoptosis pathway induced by Par-4 may help to further elucidate the mechanism of Par-4 action. Moreover, in view of the pro-apoptotic function of Par-4, its role in diseases, such as cancer and neurogenerative disorders, whose pathophysiology involves apoptotic cell death needs further investigation.  相似文献   

20.
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号