首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(4-hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the second step in the pathway for the catabolism of tyrosine, the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation. HPPD is a member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate an organic molecule. We have examined the binding of ligands to HPPD from Streptomyces avermitilis. Our data show that HPP binds to the apoenzyme and that the apo-HPPD.HPP complex does not bind Fe(II) to generate active holoenzyme. The binding of HPP, phenylpyruvate (PPA), and pyruvate to the holoenzyme produces a weak ligand charge-transfer band at approximately 500 nm that is indicative of bidentate binding of the 1-carboxylate and 2-keto pyruvate oxygen atoms to the active site metal ion. For HPPD from this organism the 4-hydroxyl group of (4-hydroxyphenyl)pyruvate is a requirement for catalysis; no turnover is observed in the presence of phenylpyruvate. The rate constant for the dissociation of Fe(II) from the holoenzyme is 0.0006 s(-)(1) and indicates that this phenomenon is not significantly relevant in steady-state turnover. The addition of HPP and molecular oxygen to the holoenzyme is formally random. The basis of the ordered bi bi steady-state kinetic mechanism previously observed by Rundgren (Rundgren, M. (1977) J. Biol. Chem. 252, 5094-9) is the 3600-fold increase in oxygen reactivity when holo-HPPD is in complex with HPP. This complex reacts with molecular oxygen with a second-order rate constant of 1.4 x 10(5) M(-)(1) s(-)(1) inducing the formation of an intermediate that decays at the catalytically relevant rate of 7.8 s(-)(1).  相似文献   

2.
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule. We have examined the reaction coordinate of HPPD from Streptomyces avermitilis using rapid mixing pre-steady-state methods in conjunction with steady-state kinetic analyses. Acid quench reactions and product analysis of homogentisate indicate that HPPD as isolated is fully active and that experiments limited in dioxygen concentration with respect to that of the enzyme do involve a single turnover. These experiments indicate that during the course of one turnover the concentration of homogentisate is stoichiometric with enzyme concentration by approximately 200 ms, well before the completion of the catalytic cycle. Subsequent single turnover reactions were monitored spectrophotometrically under pseudo-first-order and matched concentration reactant conditions. Three spectrophotometrically distinct intermediates are observed to accumulate. The first of these is a relatively strongly absorbing species with maxima at 380 and 480 nm that forms with a rate constant (k(1)) of 7.4 x 10(4) M(-)(1) s(-)(1) and then decays to a second intermediate with a rate constant (k(2)) of 74 s(-)(1). The rate constant for the decay of the second intermediate (k(3)) is 13 s(-)(1) and is concomitant with the formation of the product, homogentisate, based on rapid quench and pre-steady-state fluorescence measurements. The rate constant for this process decreases to 7.6 s(-)(1) when deuterons are substituted for protons in the aromatic ring of the substrate. The release of product from the enzyme is rate limiting and occurs at 1.6 s(-)(1). This final event exhibits a kinetic isotope effect of 2 with deuterium oxide as the solvent, consistent with a solvent isotope effect on V(max) of 2.6 observed in steady-state experiments.  相似文献   

3.
BACKGROUND: In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS: We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS: The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.  相似文献   

4.
4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.  相似文献   

5.
Vitamin E tocotrienol synthesis in monocots requires homogentisate geranylgeranyl transferase (HGGT), which catalyzes the condensation of homogentisate and the unsaturated C20 isoprenoid geranylgeranyl diphosphate (GGDP). By contrast, vitamin E tocopherol synthesis is mediated by homogentisate phytyltransferase (HPT), which condenses homogentisate and the saturated C20 isoprenoid phytyl diphosphate (PDP). An HGGT‐independent pathway for tocotrienol synthesis has also been shown to occur by de‐regulation of homogentisate synthesis. In this paper, the basis for this pathway and its impact on vitamin E production when combined with HGGT are explored. An Arabidopsis line was initially developed that accumulates tocotrienols and homogentisate by co‐expression of Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) and Escherichia coli bi‐functional chorismate mutase/prephenate dehydrogenase (TyrA). When crossed into the vte2–1 HPT null mutant, tocotrienol production was lost, indicating that HPT catalyzes tocotrienol synthesis in HPPD/TyrA‐expressing plants by atypical use of GGDP as a substrate. Consistent with this, recombinant Arabidopsis HPT preferentially catalyzed in vitro production of the tocotrienol precursor geranylgeranyl benzoquinol only when presented with high molar ratios of GGDP:PDP. In addition, tocotrienol levels were highest in early growth stages in HPPD/TyrA lines, but decreased strongly relative to tocopherols during later growth stages when PDP is known to accumulate. Collectively, these results indicate that HPPD/TyrA‐induced tocotrienol production requires HPT and occurs upon enrichment of GGDP relative to PDP in prenyl diphosphate pools. Finally, combined expression of HPPD/TyrA and HGGT in Arabidopsis leaves and seeds resulted in large additive increases in vitamin E production, indicating that homogentisate concentrations limit HGGT‐catalyzed tocotrienol synthesis.  相似文献   

6.
Deoxyhypusine hydroxylase, the enzyme that catalyzes the formation of hypusine from deoxyhypusine in eukaryotic initiation factor 4D, has been partially purified from rat testis. The partially purified enzyme requires only the addition of certain sulfhydryl compounds for catalytic activity, dithiothreitol being the most effective. Its lack of dependency on the alpha-keto acid-dependent dioxygenase cofactors, Fe2+, alpha-ketoglutarate, and ascorbic acid, its failure to decarboxylate stoichiometrically alpha-ketoglutarate with deoxyhypusine hydroxylation, and its strong and specific inhibition by Fe2+ all suggest a catalytic mechanism of this enzyme unlike that of the prolyl and lysyl hydroxylases.  相似文献   

7.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the formation of homogentisate from 4-hydroxyphenylpyruvate and O(2). In plants, HPPD has been identified as a molecular target for herbicides. We report the isolation and characterization of a cDNA encoding a HPPD from cultured Coptis japonica cells. Recombinant CjHPPD showed significantly higher half-maximum inhibitory concentration (IC(50)) values for the HPPD-inhibiting herbicide destosyl pyrazolate than other plant HPPDs.  相似文献   

8.
The transformation of 4-hydroxyphenylpyruvate to homogentisate, catalyzed by 4-hydroxyphenylpyruvate dioxygenase (HPPD), plays an important role in degrading aromatic amino acids. As the reaction product homogentisate serves as aromatic precursor for prenylquinone synthesis in plants, the enzyme is an interesting target for herbicides. In this study we report the first x-ray structures of the plant HPPDs of Zea mays and Arabidopsis in their substrate-free form at 2.0 A and 3.0 A resolution, respectively. Previous biochemical characterizations have demonstrated that eukaryotic enzymes behave as homodimers in contrast to prokaryotic HPPDs, which are homotetramers. Plant and bacterial enzymes share the overall fold but use orthogonal surfaces for oligomerization. In addition, comparison of both structures provides direct evidence that the C-terminal helix gates substrate access to the active site around a nonheme ferrous iron center. In the Z. mays HPPD structure this helix packs into the active site, sequestering it completely from the solvent. In contrast, in the Arabidopsis structure this helix tilted by about 60 degrees into the solvent and leaves the active site fully accessible. By elucidating the structure of plant HPPD enzymes we aim to provide a structural basis for the development of new herbicides.  相似文献   

9.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the formation of homogentisate from 4-hydroxyphenylpyruvate and O2. In plants, HPPD has been identified as a molecular target for herbicides. We report the isolation and characterization of a cDNA encoding a HPPD from cultured Coptis japonica cells. Recombinant CjHPPD showed significantly higher half-maximum inhibitory concentration (IC50) values for the HPPD-inhibiting herbicide destosyl pyrazolate than other plant HPPDs.  相似文献   

10.
对羟苯基丙酮酸双加氧酶(ρ-hydroxyphenylpyruvate dioxygenase,HPPD;EC 1.13.11.27)催化生物体内对羟苯基丙酮酸与O2作用形成尿黑酸的反应,是植物体中质体醌和生育酚生物合成途径的关键酶。当其活性受到抑制时,植物体中作为类胡萝卜素生物合成途径中最终电子受体和光合链电子传递体的质体醌的生物合成受阻,进而导致类胡萝卜素合成减少,光合链电子传递受阻,致使植物体出现白化症状。目前已经开发了多种以HPPD为靶标的除草剂,该类除草剂及抗除草剂转基因植物研究具有广阔的前景。对这一新型白化型除草剂靶标酶以及耐该类除草剂转基因植物的研究进展作了简要综述。  相似文献   

11.
4-Hydroxyphenylpyruvate dioxygenase (HPPD), converting 4-hydroxyphenylpyruvate acid to homogentisate, is an important target for treating type I tyrosinemia and alkaptonuria due to its significant role in tyrosine catabolism. However, only one commercial drug, NTBC, also known as nitisinone, has been available for clinical use so far. Herein, we have elucidated the structure-based design of a series of pyrazolone–quinazolone hybrids that are novel potent human HPPD inhibitors through the successful integration of various techniques including computational simulations, organic synthesis, and biochemical characterization. Most of the new compounds displayed potent inhibitory activity against the recombinant human HPPD in nanomolar range. Compounds 3h and 3u were identified as the most potent candidates with Ki values of around 10 nM against human HPPD, about three-fold more potent than NTBC. Molecular modeling indicated that the interaction between the pyrazolone ring and ferrous ion, and the hydrophobic interaction of quinazolone with its surrounding residues, such as Phe347 and Phe364, contributed greatly to the high potency of these inhibitors. Therefore, compounds 3h and 3u could be potentially useful for the treatment of type I tyrosinemia and other diseases with defects in tyrosine degradation.  相似文献   

12.
The alpha-ketoglutate (alpha-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require Fe(II), alpha-KG and dioxygen for catalysis, with the alpha-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the alpha-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an Fe(IV)O intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O(2) to generate this species is the decarboxylation of the alpha-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the alpha-keto acid to Fe(II) and the presence of a 5C Fe(II) site for the O(2) reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate alpha-KG coordination and a 5C Fe(II) site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an approximately 10(5)-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n-->pi( *) transition of the HPPD/Fe(II)/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the alpha-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO(2) is disfavored.  相似文献   

13.
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.  相似文献   

14.
Three activities of tyrosine aminotransferase (TAT; EC 2.6.1.5), the enzyme which catalyzes the first step of the tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid), have been extensively purified from cell suspension cultures of Anchusa officinalis L. and subsequently characterized. TAT-1, TAT-2, and TAT-3 differ slightly in native molecular weights (180,000-220,000) and are composed of subunits (4 X 43,000 for TAT-1 and 4 X 56,000 for TAT-2). All three enzymes show a pronounced preference for L-tyrosine over other aromatic amino acids, but TAT-2 and TAT-3 can also effectively utilize L-aspartate or L-glutamate as a substrate. For amino acceptor cosubstrates, either oxaloacetate or alpha-ketoglutarate can be utilized equally well by TAT-1, while the former is the most effective alpha-keto acid for TAT-2 and the latter is the best for TAT-3. All the TAT activities display high pH optima (8.8-9.6), and are inhibited by the tyrosine metabolite 3,4-dihydroxyphenyllactate. TAT-2 and TAT-3 are also inhibited by rosmarinic acid.  相似文献   

15.
Kavana M  Moran GR 《Biochemistry》2003,42(34):10238-10245
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is a non-heme Fe(II) enzyme that catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of the tyrosine catabolism pathway. Inhibition of HPPD by the triketone 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) is used to treat type I tyrosinemia, a rare but fatal defect in tyrosine catabolism. Although triketones have been used for many years as HPPD inhibitors for both medical and herbicidal purposes, the mechanism of inhibition is not well understood. The following work provides mechanistic insight into NTBC binding. The tautomeric population of NTBC in aqueous solution is dominated by a single enol as determined by NMR spectroscopy. NTBC preferentially binds to the complex of HPPD and FeII [HPPD.Fe(II)] as evidenced by a visible absorbance feature centered at 450 nm. The binding of NTBC to HPPD.Fe(II) was observed using a rapid mixing method and was shown to occur in two phases and comprise three steps. A hyperbolic dependence of the first observable process with NTBC concentration indicates a pre-equilibrium binding step followed by a limiting rate (K(1) = 1.25 +/- 0.08 mM, k(2) = 8.2 +/- 0.2 s(-1)), while the second phase (k(3) = 0.76 +/- 0.02 s(-1)) had no dependence on NTBC concentration. Neither K(1),k(2), nor k(3) was influenced by pH in the range of 6.0-8.0. Isotope effects on both k(2) and k(3) were observed when D(2)O is used as the solvent (for k(2), k(h)/k(d) = 1.3; for k(3), k(h)/k(d) = 3.2). It is therefore proposed that the bidentate association of NTBC with the active site metal ion (k(2)) precedes the Lewis acid-assisted conversion of the bound enol to the enolate (k(3)). Although the native enzyme without substrate reacts with molecular oxygen to form the oxidized holoenzyme, the HPPD.Fe(II).NTBC complex does not. When the complex is exposed to atmospheric oxygen, the absorbance feature associated with NTBC binding does not diminish over the course of 2 days. This means not only that the HPPD.Fe(II).NTBC complex does not oxidize but also that the dissociation rate constant for NTBC is essentially zero because any HPPD.Fe(II) that formed would readily oxidize in the presence of dioxygen. Consistent with this observation, EPR spectroscopy has shown that only 2% of the HPPD.Fe(II).NTBC complex forms an NO complex as compared to the holoenzyme.  相似文献   

16.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.  相似文献   

17.
4‐Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide‐tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated. In this work, we performed molecular dynamics simulations and free energy calculations to characterize active site gating by the C‐terminal helix H11 in HPPD. We compared gating equilibria in Arabidopsis thaliana (At) and Zea mays (Zm) wild‐type proteins retrieving the experimentally observed preferred orientations from the simulations. We investigated the influence of substrate and product binding on the open–closed transition and discovered a ligand‐mediated conformational switch in H11 that mediates rapid substrate access followed by active site closing and efficient product release through H11 opening. We further studied H11 gating in At mutant HPPD, and found large differences with correlation to experimentally measured herbicide tolerance. The computational findings were then used to design a new At mutant HPPD protein that showed increased tolerance to six commercially available HPPD inhibitors in biochemical in vitro experiments. Our results underline the importance of protein flexibility and conformational transitions in substrate recognition and enzyme inhibition by herbicides.  相似文献   

18.
Purpero VM  Moran GR 《Biochemistry》2006,45(19):6044-6055
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) incorporates both atoms of molecular oxygen into 4-hydroxyphenylpyruvate (HPP) to form homogentisate (HG). This reaction has direct relevance in both medicine and agriculture. In humans, the specific inhibition of HPPD alleviates the symptoms of diseases that arise from tyrosine catabolism defects. However, in plants, the inhibition of HPPD bleaches, stunts, and ultimately kills the organism. The reason for this is that in mammalian metabolism the product HG does not feed into other pathways, whereas in plants it is the precursor for the redox active portion of tocopherols and plastoquinones. There are a number of commercially available herbicides that directly target the inhibition of the HPPD reaction. Plant HPPD however is largely uncharacterized in terms of its catalysis and inhibition reactions. In this study, we examine the catalysis and inhibition of HPPD from Arabidopsis thaliana (AtHPPD). We have expressed AtHPPD and purified the enzyme to high specific activity. This form of HPPD accumulates two transient species in single turnover reactions with the native substrate HPP. These transients appear to be equivalent to intermediates I and III observed in the enzyme from Streptomyces (Johnson-Winters et al. (2005), Biochemistry, 44, 7189-7199). The first intermediate is a relatively strongly absorbing species with maxima at 380 and 490 nm. This species decays to a second intermediate that is fluorescent and has been assigned as the complex of the enzyme with the product, HG. The decay of this intermediate is rate-determining in multiple turnover reactions. The reaction of the enzyme with the analogue of the substrate, phenylpyruvate (PPA), is noncatalytic. A single turnover reaction is observed with this ligand that renders the enzyme oxidized to the ferric form, consumes a stoichiometric amount of dioxygen, and yields 66% phenylacetate as a product. Additional absorbance features at 365 and 670 nm accumulate during inactivation and give the inactivated enzyme a green color but has the same molecular mass as the active enzyme as determined by mass spectrometry.  相似文献   

19.
p-Hydroxyphenylpyruvate dioxygenase (HPD) plays a key role in the normal catabolism of tyrosine. An Fe2+/oxygen-dependent enzyme, it converts p-hydroxyphenylpyruvate into homogentisate and is part of the superfamily of alpha-ketoglutarate-dependent enzymes that couples oxidative decarboxylation of an alpha-ketoacid cofactor to oxidative modification of its substrate. In this case, the alpha-ketoacid is part of the substrate side chain. HPD shows strong homology to p-hydroxymandelate synthase (HMS), an enzyme that catalyzes the formation of p-hydroxymandelate from p-hydroxyphenylpyruvate, an early step in the biosynthesis of p-hydroxyphenylglycine, which is a nonproteinogenic amino acid incorporated into several biologically active secondary metabolites. Sequence alignment between the HPD and the HMS enzyme families and analysis of the Pseudomonas fluorescens HPD crystal structure highlighted four residues within each active site that may play roles in catalytic differentiation between the two products. We attempted to convert Streptomyces avermitilis HPD into an engineered S. avermitilis HMS by site-directed mutagenesis of these four residues individually and in combination. HPLC assay analysis of each His6-tagged mutant indicated that F337I successfully produced p-hydroxymandelate, along with homogentisate and an unknown compound. The structure of the latter was determined to be an oxepinone derived from the benzene-oxide intermediate long hypothesized in HPD catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号