首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.  相似文献   

3.
4', 6-Diamidine-2-phenylindole.2HCl (DAPI) forms fluorescent complexes with double-stranded (ds) DNA but not with ds RNA as shown by fluorescence titration. The widely used dye ethidium bromide (EB) forms fluorescent complexes with both types of nucleic acids. Also, in contrast to EB, DAPI forms much weaker fluorescent complexes with single-stranded DNA than with ds DNA. These observations were utilized to develop staining procedures for the selective visualization of ds DNA on gels. The use of DAPI in addition to EB for staining makes possible the localization of ds DNA and other species of nucleic acids on a single gel.  相似文献   

4.
At high binding densities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar- and base-composition) of nucleic acids.  相似文献   

5.
The Adenovirus DNA-binding protein (DBP) binds to single-stranded (ss) DNA as well as to double-stranded (ds) DNA and forms multimeric protein-DNA complexes with both. Gel retardation assays indicate rapid complex formation for both DNAs. DBP rapidly dissociates from dsDNA, indicating a dynamic equilibrium, whereas the ssDNA-DBP complex is much more stable. We investigated the complex between DBP and dsDNA in more detail. Electron microscopical analysis shows thick filament-like and beaded structures in which the length of the DNA is not significantly altered. Cryo-electron micrographs suggest the presence of interwound protein fibres around the DNA. Ligase-mediated cyclization, but not linear multimerization, of DBP-saturated DNA fragments exceeding the persistence length was severely inhibited. This suggests that DNA may be organized by DBP into a rigid structure. Under those conditions, DBP induces distinct changes in the circular dichroism spectrum of the DNA, indicative of structural DNA changes. No bending or twisting of the complex was observed. Hydroxyl radical footprinting showed that the breakdown pattern of DNA at saturating DBP concentrations is much more regular than the protein-free DNA. This suggests the removal of tertiary structures, which may be related to the effects of DBP on enhanced NFI binding and chain elongation during Adenovirus DNA replication. Using purified proteins in an in vitro replication system, we correlate the structural changes with the effects of DBP on enhancement of NFI-binding as well as on DNA replication.  相似文献   

6.
Collagen-DNA interaction studies will aid in improving the stability of DNA against nucleases. In the present study, the effect of DNA on different physico-chemical properties of collagen like viscosity, conformation and dielectric behaviour has been studied. Increase of DNA concentration leads to the increment of viscosity of collagen at the pH 4 and 5, but the trend is reversed at the pH of 6 and 7 due to the formation of collagen fibrils. The temperature dependent CD spectroscopic studies for collagen-DNA conjugate showed that thermal stability of collagen is modulated with increasing molar concentration of DNA. It also shows that DNA interactions with collagen did not result in change in the triple helical structure of collagen. Impedance measurements show that the strength of ion pairs for different molar concentrations of collagen-DNA conjugates has changed. Nyquist plot for collagen-DNA conjugate posses higher Y″ at DNA concentration of 1:25 and 1:50 whereas at 1:1 and 1:10 lower Y″ than the native collagen have been observed. An understanding of this nature of the collagen-DNA interactions is helpful for gene delivery applications.  相似文献   

7.
The postcleavage complex involved in V(D)J joining is known to possess a transpositional strand transfer activity, whose physiological role is yet to be clarified. Here we report that RAG1 and RAG2 proteins in the signal end (SE) complex cleave the 3'-overhanging structure of the synthetic coding-end (CE) DNA in two successive steps in vitro. The 3'-overhanging structure is attacked by the SE complex imprecisely, near the double-stranded/single-stranded (ds/ss) junction, and transferred to the SE. The transferred overhang is then resolved and cleaved precisely at the ds/ss junction, generating either the linear or the circular cleavage products. Thus, the blunt-end structure is restored for the SE and variably processed ends are generated for the synthetic CE. This 3'-processing activity is observed not only with the core RAG2 but also with the full-length protein.  相似文献   

8.
By combining anisotropy of small-angle neutron scattering (SANS) and optical anisotropy (linear dichroism, l.d.) on flow-oriented RecA-DNA complexes, the average DNA-base orientation has been determined in RecA complexes with double-stranded (ds) as well as single-stranded (ss) DNA. From the anisotropy of the two-dimensional SANS intensity representation, the second moment orientation function S is obtained. Knowledge of S is crucial for the interpretation of l.d. spectra in terms of orientation of the DNA bases and the aromatic amino acid residues. The DNA-base planes are essentially perpendicular to the fibre axis of the complex between RecA and dsDNA in the presence of cofactor ATP gamma S. A somewhat tilted base geometry is found for the RecA-ATP gamma S complexes with single-stranded poly(dT) and poly(d epsilon A). This behaviour contrasts the RecA-ssDNA complex formed without cofactor which displays a poor orientation of the bases. Well-ordered bases in the ssDNA-RecA complex is possibly reflecting the role of RecA in preparing a nucleotide strand for base-pairing in the search-for-homology process. While the central SANS intensity is essentially independent of the pitch of the helical complex, a secondary intensity maximum, which becomes focused upon flow orientation, is found to be a sensitive measure of the pitch. The pitch values for the complexes compare well with cryo-electron microscopy results but are slightly larger than those seen for uranyl-stained samples.  相似文献   

9.
Acridine orange (AO) forms 1:1 complexes with dsDNA which are insoluble in aqueous media, exhibit red luminescence, have minimal green luminescence and resemble complexes of AO with ss nucleic acids. During formation and/or dissociation of these complexes, accessibility of DNA bases to two conformational probes, formaldehyde and diethyl pyrocarbonate is increased, suggesting that the base pairing is destroyed and DNA at least partially denatured. Adriamycin and Ellipticine, but not Ethidium Bromide exert similar destabilizing effects. The results confirm our earlier predictions based on thermodynamic calculations that the double helix undergoes destabilization upon binding an intercalator characterized by high cooperativity in interaction with ss nucleic acids. Thus, the highly cooperative ligand binding to ss sections during the "breathing" of the polymer may progressively destabilize the adjacent ds structure.  相似文献   

10.
An immunoassay was used to examine the interaction between a herpes simplex virus protein, ICP8, and various types of DNA. The advantage of this assay is that the protein is not subjected to harsh purification procedures. We characterized the binding of ICP8 to both single-stranded (ss) and double-stranded (ds) DNA. ICP8 bound ss DNA fivefold more efficiently than ds DNA, and both binding activities were most efficient in 150 mM NaCl. Two lines of evidence indicate that the binding activities were not identical: (i) ds DNA failed to complete with ss DNA binding even with a large excess of ds DNA; (ii) Scatchard plots of DNA binding with various amounts of DNA were fundamentally different for ss DNA and ds DNA. However, the two activities were related in that ss DNA efficiently competed with the binding of ds DNA. We conclude that the ds DNA-binding activity of ICP8 is probably distinct from the ss DNA-binding activity. No evidence for sequence-specific ds DNA binding was obtained for either the entire herpes simplex virus genome or cloned viral sequences.  相似文献   

11.
Two non-linked marker genes (gus and bar) were co-introduced by microprojectile bombardment into wheat cells. Four different DNA structures were compared with respect to ability to integrate into the wheat genome: circular or linear (l) DNA as a single- or double-stranded plasmid (ss and ds, respectively). In eight independent experiments, linearized DNA integrated in the ds or ss form with a high efficiency of up to 14% for l-ssDNA. Molecular analyses by Southern blotting showed that all DNA forms gave a similar complicated integration pattern of the bar gene. Received: 20 July 1998 / Accepted: 30 January 1999  相似文献   

12.
Anna J. Podhajska  Waclaw Szybalski   《Gene》1985,40(2-3):175-182
Endonuclease FokI belongs to class IIS of restriction enzymes, for which the DNA cut points lie outside the enzyme-recognition sites. This permitted conferring new cleavage specificities by combining FokI with tailored oligodeoxynucleotide adapters. Such adapters carry a single-stranded (ss) target-recognition domain, complementary to the selected ss target DNA, and a double-stranded (ds) enzyme-recognition site. Neither enzyme nor adapter alone has endonucleolytic activity toward phage M13mp7 ss DNA, whereas the enzymeadapter complex cleaves this ss target DNA at the particular sites foreordained by the sequence of the ss domain of the adapter. Two kinds of adapters (32 and 34 nucleotides long), with opposing orientations of the asymmetric FokI recognition site, were constructed and shown to direct specific cleavage under a variety of conditions. In addition to FokI, other class IIS enzymes, HphI, MboII and BbvI, which alone do not cleave ss DNA, are suitable for construction of tailored enzyme-adapter complexes with predictable cleavage specificities.

This report provides a preliminary experimental confirmation for the proposal of Szybalski [Gene 40 (1985) 169-173] for the design of adapter-enzyme complexes with novel and predictable specificities. Theoretically, using this approach any sequence could be precisely cleaved at a predetermined point.  相似文献   


13.
14.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

15.
DNA (6-4) photoproducts are major constituents of ultraviolet-damaged DNAs. We prepared double-stranded (ds) (6-4) DNA photoproducts and analyzed formation of their complexes with anti-(6-4) photoproduct antibody Fabs. Elution profiles of the mixtures of ds-(6-4) DNAs and Fabs from anion-exchange and gel-filtration columns indicate that Fab 64M-2 deprives 14mer ds-(6-4) DNA of single-stranded (ss) (6-4) DNA and shows no interaction with 18 mer ds-(6-4) DNA (A18). Fab 64M-5 with an approximately 100-fold higher affinity than Fab 64M-2 forms a complex with the ds-(6-4) DNA (A18), but partly dissociates another 18 mer ds-(6-4) DNA (A18-3), with a lowered G-C content, into ss-DNAs. From these results, antibody 64M-5 possibly accommodates the T(6-4)T photolesion moiety of the ds-(6-4) DNA (A18) by flipping out the moiety from its neighboring segments.  相似文献   

16.
Abstract

At high binding denstities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar-and base-composition) of nucleic acids.  相似文献   

17.
C Baldari  G Cesareni 《Gene》1985,35(1-2):27-32
We describe the construction and properties of pEMBLY plasmids. They belong to a new family of yeast shuttle vectors which are derived from plasmid vector pEMBL9 and offer the following improvement: relatively small size; large number of cloning sites; screening for insert-containing plasmids on indicator plates; different combinations of genes which complement auxotrophic deficiencies and sequences that support DNA replication in Saccharomyces cerevisiae; and ability to isolate the plasmid DNA in single-stranded (ss) form. The yeast S. cerevisiae can be efficiently transformed by these plasmids in both the ss and double-stranded (ds) forms. Finally, the presence of the phage f1 intergenic region allows one to obtain the cloned sequences in the ss form upon infection with the wild-type ss phage [Dotto et al., Virology 114 (1981) 463-473].  相似文献   

18.
Replication of hepatitis C virus (HCV) RNA in virus-infected cells is believed to be catalyzed by viral replicase complexes (RCs), which may consist of various virally encoded nonstructural proteins and host factors. In this study, we characterized the RC activity of a crude membrane fraction isolated from HCV subgenomic replicon cells. The RC preparation was able to use endogenous replicon RNA as a template to synthesize both single-stranded (ss) and double-stranded (ds) RNA products. Divalent cations (Mg2+ and Mn2+) showed different effects on RNA synthesis. Mg2+ ions stimulated the synthesis of ss RNA but had little effect on the synthesis of ds RNA. In contrast, Mn2+ ions enhanced primarily the synthesis of ds RNA. Interestingly, ss RNA could be synthesized under certain conditions in the absence of ds RNA, and vice versa, suggesting that the ss and ds RNA were derived either from different forms of replicative intermediates or from different RCs. Pulse-chase analysis showed that radioactivity incorporated into the ss RNA was chased into the ds RNA and other larger RNA species. This observation indicated that the newly synthesized ss RNA could serve as a template for a further round of RNA synthesis. Finally, 3' deoxyribonucleoside triphosphates were able to inhibit RNA synthesis in this cell-free system, presumably through chain termination, with 3' dGTP having the highest potency. Establishment of the replicase assay will facilitate the identification and evaluation of potential inhibitors that would act against the entire RC of HCV.  相似文献   

19.
The defining event in homologous recombination is the exchange of base-paired partners between a single-stranded (ss) DNA and a homologous duplex driven by recombinase proteins, such as human RAD51. To understand the mechanism of this essential genome maintenance event, we analyzed the structure of RAD51–DNA complexes representing strand exchange intermediates at nanometer resolution by scanning force microscopy. Joint molecules were formed between substrates with a defined ssDNA segment and homologous region on a double-stranded (ds) partner. We discovered and quantified several notable architectural features of RAD51 joint molecules. Each end of the RAD51-bound joints had a distinct structure. Using linear substrates, a 10-nt region of mispaired bases blocked extension of joint molecules in all examples observed, whereas 4 nt of heterology only partially blocked joint molecule extension. Joint molecules, including 10 nt of heterology, had paired DNA on either side of the heterologous substitution, indicating that pairing could initiate from the free 3′end of ssDNA or from a region adjacent to the ss–ds junction. RAD51 filaments covering joint ss–dsDNA regions were more stable to disassembly than filaments covering dsDNA. We discuss how distinct structural features of RAD51-bound DNA joints can play important roles as recognition sites for proteins that facilitate and control strand exchange.  相似文献   

20.
M Yaneva  T Kowalewski    M R Lieber 《The EMBO journal》1997,16(16):5098-5112
DNA-dependent protein kinase (DNA-PK or the scid factor) and Ku are critical for DNA end-joining in V(D)J recombination and in general non-homologous double-strand break repair. One model for the function of DNA-PK is that it forms a complex with Ku70/86, and this complex then binds to DNA ends, with Ku serving as the DNA-binding subunit. We find that DNA-PK can itself bind to linear DNA fragments ranging in size from 18 to 841 bp double-stranded (ds) DNA, as indicated by: (i) mobility shifts; (ii) crosslinking between the DNA and DNA-PK; and (iii) atomic-force microscopy. Binding of the 18 bp ds DNA to DNA-PK activates it for phosphorylation of protein targets, and this level of activation is not increased by addition of purified Ku70/86. Ku can stimulate DNA-PK activity beyond this level only when the DNA fragments are long enough for the independent binding to the DNA of both DNA-PK and Ku. Atomic-force microscopy indicates that under such conditions, the DNA-PK binds at the DNA termini, and Ku70/86 assumes a position along the ds DNA that is adjacent to the DNA-PK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号