首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer disease is associated with extracellular deposits of amyloid beta-peptides in the brain. Amyloid beta-peptides are generated by proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretases. The cleavage by secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in proteolytic processing of the beta-amyloid precursor protein. To analyze the role of glycosphingolipids in these processes we inhibited glycosyl ceramide synthase, which catalyzes the first step in glycosphingolipid biosynthesis. The depletion of glycosphingolipids markedly reduced the secretion of endogenous beta-amyloid precursor protein in different cell types, including human neuroblastoma SH-SY5Y cells. Importantly, secretion of amyloid beta-peptides was also strongly decreased by inhibition of glycosphingolipid biosynthesis. Conversely, the addition of exogenous brain gangliosides to cultured cells reversed these effects. Biochemical and cell biological experiments demonstrate that the pharmacological reduction of cellular glycosphingolipid levels inhibited maturation and cell surface transport of the beta-amyloid precursor protein. In the glycosphingolipid-deficient cell line GM95, cellular levels and maturation of beta-amyloid precursor protein were also significantly reduced as compared with normal B16 cells. Together, these data demonstrate that glycosphingolipids are implicated in the regulation of the subcellular transport of the beta-amyloid precursor protein in the secretory pathway and its proteolytic processing. Thus, enzymes involved in glycosphingolipid metabolism might represent targets to inhibit the production of amyloid beta-peptides.  相似文献   

2.
The effect of puromycin and cycloheximide on the biosynthesis of neutral glycosphingolipids and gangliosides by PHA stimulated lymphocytes is studied. Under conditions of permanent inhibition of protein synthesis, and depending on the time of lymphocyte stimulation, inhibition of the biosynthesis of neutral glycosphingolipids was either restricted only to certain species or was very low for all glycosphingolipid species. The degree of inhibition of the various ganglioside species was affected by the time of incubation. After transient inhibition of protein synthesis and at times when protein biosynthesis had recovered, neutral glycosphingolipid and ganglioside biosynthesis inhibition was very prominent and did not recover. The possibility is discussed that glycosphingolipid biosynthesis does not depend directly on concurrent nascent peptide formation and it is proposed that inhibition of glycosphingolipid biosynthesis is related primarily to impairment of the endoplasmic reticulum and to inhibition of galactose transferases, secondary to the binding of the inhibitors.  相似文献   

3.
Cell adhesion and spreading on solid phase fibronectin (FN), coated on plate or presented in extracellular matrix, are mediated by integrin receptors alpha5beta1, alpha4beta1, etc., although binding of "soluble-form FN" to cell surface varies extensively depending on glycosylation status of FN per se. Deposition or incorporation at the cell surface or pericellular matrix of soluble-form FN from body fluids or synthesized de novo takes place through a yet-unknown (perhaps integrin-independent) mechanism. Here we present evidence that the mechanism involves carbohydrate-to-carbohydrate interaction. Binding or incorporation of soluble-form placental or hepatoma FN to cell surface or pericellular matrix is highly dependent on the specific glycosylation status of FN per se and combination with glycosylation status of the cell surface, and is greatly promoted by a certain type of coexisting (shedded) glycosphingolipid. A few lines of study indicate that the process is mediated by interaction of FN carbohydrate with cell surface carbohydrate. The great enhancement of the binding process by glycosphingolipid is based on dual interaction of glycosphingolipid carbohydrate with FN carbohydrate and with cell surface carbohydrate. Here we present an example of promotion of binding of soluble-form FN from placenta or from hepatoma cells, having a specific carbohydrate epitope termed "disialyl-I," to K562 or VA13 cell surface in the presence of glycosphingolipid Gg3, which interacts specifically with disialyl-I.  相似文献   

4.
A number of proteins produced by certain bacteria and plants are potently toxic to mammalian cells. This toxicity results from their ability to catalytically modify macromolecules that are required for essential cellular functions such as vesicular trafficking, cytoskeletal assembly, signalling or protein synthesis. To reach their targets, these proteins bind specific surface receptors before endocytosis and translocation across an internal membrane. The surface receptors exploited by different toxins include a range of proteins and lipids. Here we focus on specific glycosphingolipid receptors and two well-characterised subsets of toxins that exploit them for surface binding, intracellular trafficking, and signalling events.  相似文献   

5.
The ability of phospholipase A2 from porcine pancreas to degrade all of the available dilauroylphosphatidylcholine in mixed monolayers with galactocerebroside, sulfatide, or ganglioside GM1 was investigated at different constant surface pressures. Under the conditions used the interfacial glycosphingolipid composition was continuously enriched as the enzyme action proceeded. The total percentage of phospholipid degradation depends on the surface pressure and on the type of glycosphingolipid. The presence of sulfatide activates the enzyme while galactocerebroside and ganglioside GM1 are inhibitory. The extent of phospholipid hydrolysis is independent of the effect of glycosphingolipids on the enzyme velocity. This is so when the latter is measured either in conditions of constant glycosphingolipid composition and zero-order kinetics [Bianco, I.D., Fidelio, G.D., & Maggio, B. (1989) Biochem. J. 258, 95-99] or under variable surface composition as in the present work. The modulation of phospholipase A2 activity by glycosphingolipids operates at two independent levels. One controls the rate of enzyme activity, and the other modulates the total extent of substrate degradation. This depends on the initial interaction of the enzyme with the interface. The glycosphingolipid effect on the activity is different depending on whether the enzyme has access to the substrate from the subphase or is already adsorbed to the lipid interface.  相似文献   

6.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

7.
8.
Glycosphingolipids are a polysaccharide chain between 1 and 40 carbohydrate residues long glycosidically linked to ceramide (a long-chain aliphatic amino-alcohol or sphingoid) that is embedded in the cell plasma membrane with the carbohydrate moiety on the outside. The sphingoid imparts rigidity to the membrane and the carbohydrate tails protect the cell surface and have functions in relation to cell adhesion, growth, regulation, differentiation, cell interaction, recognition and signalling. They provide adhesion sites for pathogens and change during oncogenic transformation. Ceramide is also a component of sphingomyelin. Glycosphingolipids are degraded by lysosomal hydrolysis. The sphingolipidoses are a series of diseases in which mutations affecting the enzymes catalysing the last 11 steps of this process causing abnormal compounds proximal to the metabolic block to accumulate intralysosomally. Thus, they are a sub-group of the lysosomal storage diseases. The degradation of sphingolipids containing three or less carbohydrate residues requires a sphingolipid activator protein and mutations affecting these proteins also cause abnormal glycosphingolipid storage. With one exception (Fabry disease, which is X linked) the sphingolipidoses are inherited autosomally. The phenotypic manifestations of the individual sphingolipidoses are variable although the more severe variants are usually the better known. They have generally been regarded as untreatable but notable therapeutic advances are being made by enzyme replacement therapy and regulating the rate of glycosphingolipid synthesis by inhibiting UDP-glucose-N-acylsphingosine D-glucosyl transferase (CerGlcT), which is the first reaction on the pathway of glycosphingolipid synthesis. The compounds used are N-alkylated iminosugars whose glucose and galactose stereochemistries inhibit CerGlcT. Prenatal and carrier state diagnosis, genetic counselling and the abortion of affected foetuses are reducing the incidence of some of the most severe sphingolipidoses in certain high-incidence populations.  相似文献   

9.
From the cell envelope preparation of Sphingomonas paucimobilis two membrane fractions with different densities were separated by sucrose density gradient ultracentrifugation. The high-density fraction contained several major proteins, phospholipids, and glycosphingolipids, which are the only glycolipids of this lipopolysaccharide-lacking gram-negative bacterium. The low-density fraction showed many minor bands of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NADH oxidase activity was localized in this fraction. Combined with morphological data of vesicles formed by these membrane fractions, the high-density and low-density fractions were proposed to be an outer membrane and a cytoplasmic membrane, respectively. The localization of the glycosphingolipid was investigated also by means of immunoelectron microscopic analysis using a glycosphingolipid-specific antibody. The glycosphingolipid was shown to localize at the cell envelope, and the antigenic sugar portion was exposed to the bacterial cell surface. From these results the glycosphingolipid was assumed to have a function similar to that of the lipopolysaccharide of other gram-negative bacteria.  相似文献   

10.
Characterization of ganglioside associated with the thyrotrophin receptor   总被引:1,自引:1,他引:0  
The receptor protein for thyrotrophin (thyroid-stimulating hormone;TSH) is associated with a glycosphingolipid moiety. The proteinbelongs to the family of receptors that couple to guanine nucleotidebinding proteins; the glycosphingolipid contains sialic acidand belongs to the family of gangliosides. This report definesthe structure of the receptor ganglioside in the Fisher ratthyroid cell line (FRTL-5). Receptor protein was purified byTSH affinity chromatography from FRTL-5 cells, biosyntheticallylabelled with [3H]galactose and [3H]glucosamine, and resolvedby SDS-PAGE. A single radiolabelled band of Mr  相似文献   

11.
One of the conserved functional pathways linked to engulfment of apoptotic corpses involves two membrane proteins low density lipoprotein receptor-related protein-1 (LRP) and ABCA1 and the LRP adapter protein GULP. Because LRP and ABCA1 play roles in cellular lipid trafficking and efflux, here we addressed whether the third member, the LRP adapter protein GULP, also affects cellular lipid transport. Several lines of evidence show that overexpression of GULP causes glycosphingolipid and free cholesterol accumulation in the late endosome/lysosome compartment that is accompanied by down-regulation of ABCA1 and decreased efflux. Conversely, knockdown of endogenous GULP expression promoted cholesterol flux through the late endosomes and up-regulation of ABCA1, even in the context of a disease state such as Niemann-Pick Type C disease. Mechanistically, we were able to show that trafficking of the LRP ligands alpha2-macroglobulin and prosaposin, a protein cofactor necessary for glycosphingolipid degradation, are impaired in cells expressing full-length GULP protein, resulting in glycosphingolipid and free cholesterol accumulation in the late endosome/lysosome compartment. On the other hand, knockdown of endogenous GULP results in enhanced targeting of prosaposin and enhanced clearance of glycosphingolipids and cholesterol from the late endosomes. Taken together, these data reveal that GULP/LRP/ABCA1 represents a triad of molecules involved in engulfment and cellular lipid homeostasis.  相似文献   

12.
Proteins in the postmicrosomal supernatant fraction of rat brain catalyzed the transfer of bovine brain galactocerebroside, sulfatide, and ganglioside GM1 from unilamellar liposomes to the rat erythrocytes or ghosts. The vesicles were made with egg yolk lecithin, cholesterol, 3H-labelled glycolipid, and a trace of [14C]triolein as a nonexchangeable marker. The routine assay of the glycosphingolipid transfer consisted of incubation of the donor liposomes with erythrocytes in the presence or absence of supernatant protein in physiological buffer at 37 degrees C for various time intervals. After the incubation, the erythrocytes were separated from the vesicles by centrifugation and the extent of protein-catalyzed transfer of labelled glycolipid in the membrane-bound total lipid fraction was determined by scintillation spectrometry. The fraction of [3H]glycosphingolipid transferred is represented by a change in the 3H/14C ratios at initial and subsequent time intervals. The glycosphingolipid transfer catalyzed by the supernatant protein was found to be logarithmic, whereas the protein-independent transfer was linear over a period of 3-4 h. The rate constant (K) and half time (t1/2) of the protein-catalyzed transfer reaction of cerebrosides and sulfatides were almost the same, while the transfer of ganglioside GM1 occurred at a slightly faster rate, probably owing to the greater aqueous solubility of this lipid. The transfer activity was also increased in a manner dependent on the amount of supernatant protein added up to 10 mg. The catalytic activity of the protein was lost when heated at 70 degrees C for 5 min. The pH optimum of the activity was around 7.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Members of the glycolipid transfer protein superfamily (GLTP) are found from animals and fungi to plants and red micro-alga. Eukaryotes that encode the glucosylceramide synthase responsible for the synthesis of glucosylceramide, the precursor for most glycosphingolipids, also produce GLTPs. Cells that does not synthesize glucosylceramide neither express GLTPs. Based on this genetic relationship there must be a strong correlation between the synthesis of glucosylceramide and GLTPs. To regulate the levels of glycolipids we have used inhibitors of intracellular trafficking, glycosphingolipid synthesis and degradation, and small interfering RNA to down-regulate the activity of glucosylceramide synthase activity. We found that GLTP expression, both at the mRNA and protein levels, is elevated in cells that accumulate glucosylceramide. Monensin and brefeldin A block intracellular vesicular transport mechanisms. Brefeldin A treatment leads to accumulation of newly synthesized glucosylceramide, galactosylceramide and lactosylceramide in a fused endoplasmic reticulum-Golgi complex. On the other hand, inhibiting glycosphingolipid degradation with conduritol-B-epoxide, that generates glucosylceramide accumulation in the lysosomes, did not affect the levels of GLTP. However, glycosphingolipid synthesis inhibitors like PDMP, NB-DNJ and myriocin, all decreased glucosylceramide and GLTP below normal levels. We also found that an 80% loss of glucosylceramide due to glucosylceramide synthase knockdown resulted in a significant reduction in the expression of GLTP. We show here that interfering with membrane trafficking events and simple neutral glycosphingolipid synthesis will affect the expression of GLTP. We postulate that a change in the glucosylceramide balance causes a response in the GLTP expression, and put forward that GLTP might play a role in lipid directing and sensing of glucosylceramide at the ER-Golgi interface.  相似文献   

14.
Dynamics of putative raft-associated proteins at the cell surface   总被引:6,自引:0,他引:6  
Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.  相似文献   

15.
16.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

17.
The plant toxin ricin binds to both glycosphingolipids and glycoproteins with terminal galactose and is transported to the Golgi apparatus in a cholesterol-dependent manner. To explore the question of whether glycosphingolipid binding of ricin or glycosphingolipid synthesis is essential for transport of ricin from the plasma membrane to the Golgi apparatus, retrogradely to the endoplasmic reticulum or for translocation of the toxin to the cytosol, we have investigated the effect of ricin and the intracellular transport of this toxin in a glycosphingolipid-deficient mouse melanoma cell line (GM95), in the same cell line transfected with ceramide glucosyltransferase to restore glycosphingolipid synthesis (GM95-CGlcT-KKVK) and in the parental cell line (MEB4). Ricin transport to the Golgi apparatus was monitored by quantifying sulfation of a modified ricin molecule, and toxicity was studied by measuring protein synthesis. The data reveal that ricin is transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum and translocated to the cytosol equally well and apparently at the same rate in cells with and without glycosphingolipids. Importantly cholesterol depletion reduced endosome to Golgi transport of ricin even in cells without glycosphingolipids, demonstrating that cholesterol is required for Golgi transport of ricin bound to glycoproteins. The rate of retrograde transport of ricin was increased strongly by monensin and the lag time for intoxication was reduced both in cells with and in those without glycosphingolipids. In conclusion, neither glycosphingolipid synthesis nor binding of ricin to glycosphingolipids is essential for cholesterol-dependent retrograde transport of ricin. Binding of ricin to glycoproteins is sufficient for all transport steps required for ricin intoxication.  相似文献   

18.
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.  相似文献   

19.
The thermodynamic and geometrical features of possible self-assembled structures of a series of chemically related glycosphingolipids differing in the complexity of their polar headgroup, and of their mixture with phospholipids, have been predicted according to the theory of self-assembly of hydrocarbon amphiphiles of Israelachvili et al. ((1980) Q. Rev. Biophys. 13, 340-357). The type and number of carbohydrate residues in the oligosaccharide chain of the polar headgroup are of paramount importance to determine the characteristics and thermodynamic stability of the possible self-assembled structure. In single component systems, the general prediction of the theory is that smaller aggregates may form as the polar headgroup of the glycosphingolipid is more complex and as the lateral surface pressure is smaller. In noninteracting two-component glycosphingolipid-phospholipid systems, the thermodynamic stability and the overall geometry of the possible aggregate appear to be determined by the proportion and type of glycosphingolipid present. Large and abrupt changes of the possible free energy per molecule, radius of curvature, and predicted asymmetry ratio for a particular glycosphingolipid may be triggered by relatively small changes of the molecular parameters, lipid composition, lateral surface pressure or vice-versa. If intermolecular interactions are taken into account with respect to the predictions for an ideal, noninteracting system, the theory indicates that two-component bilayer vesicles of polysialoganglioside-phosphatidylcholine may be thermodynamically and geometrically more stable. On the other hand, for systems constituted by phosphatidylcholine and neutral glycosphingolipids or monosialogangliosides, the possible bilayer vesicle is predicted to be less stable than in the ideal, noninteracting case. The results emphasize the general validity of the theory as applied to glycosphingolipid-containing systems.  相似文献   

20.
Next to the protein-based machineries composed of small G-proteins, coat complexes, SNAREs and tethering factors, the lipid-based machineries are emerging as important players in membrane trafficking. As a component of these machineries, lipid transfer proteins have recently attracted the attention of cell biologists for their involvement in trafficking along different segments of the secretory pathway. Among these, the four-phosphate adaptor protein 2 (FAPP2) was discovered as a protein that localizes dynamically with the trans-Golgi network and regulates the transport of proteins from the Golgi complex to the cell surface. Later studies have highlighted a role for FAPP2 as lipid transfer protein involved in glycosphingolipid metabolism at the Golgi complex. Here we discuss the available evidence on the function of FAPP2 in both membrane trafficking and lipid metabolism and propose a mechanism of action of FAPP2 that integrates its activities in membrane trafficking and in lipid transfer. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号