首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
One of the inherent problems in the use of antisense oligodeoxynucleotides to ablate gene expression in cell cultures is that the stringency of hybridization in vivo is not subject to control and may be sub-optimal. Consequently, phosphodiester or phosphorothioate antisense effectors and non-targeted cellular RNA may form partial hybrids which are substrates for RNase H. Such processes could promote the sequence dependent inappropriate effects recently reported in the literature. We have attempted to resolve this problem by using chimeric methylphosphonodiester/phosphodiester oligodeoxynucleotides. In contrast to the extensive RNA degradation observed with all-phosphodiester oligodeoxynucleotides, highly modified chimeric antisense effectors displayed negligible, or undetectable, cleavage at non-target sites without significantly impaired activity at the target site. We also note that all of the all-phosphodiester oligodeoxynucleotides tested demonstrated inappropriate effects, and that such undesirable activity could vary widely between different sequences.  相似文献   

2.
3.
Lipofectin, which is a mixture of neutral lipid with a cationic lipid, has been widely used to enhance cellular delivery of phosphorothioate, 2'-sugar-modified, and chimeric antisense oligonucleotides. Phosphodiester oligonucleotides delivered with Lipofectin usually do not elicit antisense activity probably because cationic lipid formulations do not sufficiently protect unmodified oligonucleotides from nuclease degradation. We show that a cationic polymer, polyethylenimine (PEI), improves the uptake and antisense activity of 3'-capped 20-mer and 12-mer antisense phosphodiester oligonucleotides (PO-ODN) targeted to different regions of Ha-ras mRNA and to the 3'-untranslated region (3'-UTR) of C-raf kinase. In contrast, PEI, which forms a very stable complex with the 20-mer phosphorothioate oligonucleotide (PS-ODN), does not enhance its antisense activity. Using fluorescently labeled carriers and ODN, we show that PEI-PS-ODN particles are very efficiently taken up by cells but PS-ODN is not dissociated from the carrier. Our results indicate that carrier-ODN particle size and stability and ODN release kinetics vary with the chemical nature of the ODN and the carrier being transfected into the cells. The very low cost of PEI compared with cytofectins and the increased affinity for target mRNA and decreased affinity for proteins of PO-ODN compared with PS-ODN make the use of PEI-PO-ODN very attractive.  相似文献   

4.
C Baker  D Holland  M Edge    A Colman 《Nucleic acids research》1990,18(12):3537-3543
Using the endogenous histone H4 mRNA of Xenopus oocytes as a target, we have previously shown that 20mer oligos complementary to different parts of this sequence vary in their effectiveness at causing mRNA cleavage in vivo, and that some of the RNA can never be cleaved. In this paper we show that the resistant RNA is not localised within one part of the oocyte, and that the relative resistance in vivo of endogenous or synthetic H4 mRNA to the different oligos is preserved in an in vitro assay system using deproteinised RNA. If an prior annealing step is included in vitro, all resistance is abolished. Chemical modification of one oligo by end substitution with methylphosphonate or phosphorothioate residues did not improve cleavage efficiency. Oligos with complete phosphorothioate substitution cause slower cleavage in vivo but persist for longer. Consequently phosphorothioate oligos are effective at lower doses than phosphodiester ones, provided that the incubation time is long enough (24 hours). Increasing oligo length from 20nt to 30nt increases phosphorothioate oligo efficiency over long reaction times in vivo, but decreases efficiency during short in vitro assays. Similar increases in length did not affect phosphodiester oligo performance in vivo, but caused a decrease in efficiency in vitro which was overcome by an annealing step.  相似文献   

5.
Antisense oligonucleotides are an attractive therapeutic option to modulate specific gene expression. However, not all antisense oligonucleotides are effective in inhibiting gene expression, and currently very few methods exist for selecting the few effective ones from all candidate oligonucleotides. The lack of quantitative methods to rapidly assess the efficacy of antisense oligonucleotides also contributes to the difficulty of discovering potent and specific antisense oligonucleotides. We have previously reported the development of a prediction algorithm for identifying high affinity antisense oligonucleotides based on mRNA-oligonucleotide hybridization. In this study, we report the antisense activity of these rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gp130) in cell culture. The effectiveness of oligonucleotides was evaluated by a kinetic PCR technique, which allows quantitative evaluation of mRNA levels and thus provides a measure of antisense-mediated decreases in target mRNA, as occurs through RNase H recruitment. Antisense oligonucleotides that were predicted to have high affinity for their target proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. This approach may aid the development of antisense oligonucleotides for a variety of applications.  相似文献   

6.

Background

A study was undertaken to resolve preliminary conflicting results on the proliferation of leukemia cells observed with different c-myc antisense oligonucleotides.

Results

RNase H-active, chimeric methylphosphonodiester / phosphodiester antisense oligodeoxynucleotides targeting bases 1147–1166 of c-myc mRNA downregulated c-Myc protein and induced apoptosis and cell cycle arrest respectively in cultures of MOLT-4 and KYO1 human leukemia cells. In contrast, an RNase H-inactive, morpholino antisense oligonucleotide analogue 28-mer, simultaneously targeting the exon 2 splice acceptor site and initiation codon, reduced c-Myc protein to barely detectable levels but did not affect cell proliferation in these or other leukemia lines. The RNase H-active oligodeoxynucleotide 20-mers contained the phosphodiester linked motif CGTTG, which as an apoptosis inducing CpG oligodeoxynucleotide 5-mer of sequence type CGNNN (N = A, G, C, or T) had potent activity against MOLT-4 cells. The 5-mer mimicked the antiproliferative effects of the 20-mer in the absence of any antisense activity against c-myc mRNA, while the latter still reduced expression of c-myc in a subline of MOLT-4 cells that had been selected for resistance to CGTTA, but in this case the oligodeoxynucleotide failed to induce apoptosis or cell cycle arrest.

Conclusions

We conclude that the biological activity of the chimeric c-myc antisense 20-mers resulted from a non-antisense mechanism related to the CGTTG motif contained within the sequence, and not through downregulation of c-myc. Although the oncogene may have been implicated in the etiology of the original leukemias, expression of c-myc is apparently no longer required to sustain continuous cell proliferation in these culture lines.  相似文献   

7.
Antisense activity in living cells has been thought to occur via a mechanism involving both DNA-mediated hybridization arrest of target mRNA and RNase H-mediated mRNA digestion. Therefore an ideal antisense agent should be permeable to the cell and possess capacities (1) to form a thermally stable duplex in vivo with its target, (2) to discriminate between mRNAs with different degrees of complementarity, and (3) to form antisense/RNA complexes that are susceptible to RNase H hydrolysis. A trisamine-modified deoxyuridine derivative of a novel phosphorothioate DNA 15-mer that meets all these criteria is described here. Compared with the unmodified phosphorothioate oligomer, the phosphorothioate derivative exhibits a higher antisense activity as well as reduced cytotoxicity in cells infected with HIV-1. Our data suggest that the melting temperature (T(m)) between antisense DNA and the target mRNA is not only one of the factors contributing to this derivative's improved antisense activity. Also important are an enhanced ability to discriminate between sequences and an increased susceptibility of the DNA/mRNA complex to RNase H hydrolysis. These results will be useful in designing more active, clinically useful antisense drugs.  相似文献   

8.
We have designed a new class of oligonucleotides, "dumbbell RNA/DNA chimeric phosphodiesters", containing two alkyl loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA) in the double helical stem. The reaction of nicked (NDRDON) and circular (CDRDON) dumbbell RNA/DNA chimeric oligonucleotides with RNaseH gave the corresponding antisense phosphodiester oligonucleotide together with the sense RNA cleavage products. The liberated antisense phosphodiester oligodeoxynucleotide was bound to the target 35mer RNA, which gave 35mer RNA cleavage products by treatment with RNaseH. The circular dumbbell RNA/DNA chimeric oligonucleotide showed more nuclease resistance than the linear antisense phosphodiester oligodeoxynucleotide(anti-ODN) and the nicked dumbbell RNA/DNA chimeric oligonucleotide.  相似文献   

9.
A novel, positive read-out assay that quantifies only sequence-specific nuclear activity of antisense oligonucleotides was used to evaluate morpholino and 2'-O-methyl sugar-phosphate oligonucleotides. The assay is based on modification of the splicing pathway of human beta-globin pre-mRNA. In addition, scrape-loading of cells with oligonucleotides allows the separate assessment of intracellular antisense activity of the oligonucleotides and their ability to penetrate the cell membrane barrier. The results show that, with scrape-loading, the morpholino oligonucleotides were approximately 3-fold more effective in their intrinsic antisense activity than alternating phosphodiester/phosphorothioate 2'-O-methyl-oligoribonucleotides and 6-9- and almost 200-fold more effective than the exclusively phosphorothioate and phosphodiester derivatives, respectively. The morpholino oligonucleotides were over 20-fold more effective than the phosphorothioate 2'-O-methyl-oligoribonucleotides in free uptake from the culture media. The antisense activity of the morpholino oligonucleotides was detectable not only in monolayer HeLa cells but also in suspension K562 cells. Time course experiments suggest that both the free uptake and efflux of morpholino oligonucleotides are slow.  相似文献   

10.
The design of new antisense oligomers with improved binding affinity for targeted RNA, while still activating RNase H, is a major research area in medicinal chemistry. RNase H recognizes the RNA-DNA duplex and cleaves the complementary mRNA strand, providing the main mechanism by which antisense oligomers elicit their activities. It has been shown that configuration inversion at the C2' position of the DNA sugar moiety (arabinonucleic acid, ANA), combined with the substitution of the 2'OH group by a fluorine atom (2'F-ANA) increases the oligomer's binding affinity for targeted RNA. In the present study, we evaluated the antisense activity of mixed-backbone phosphorothioate oligomers composed of 2'-deoxy-2'-fluoro-beta-D-arabinose and 2'-deoxyribose sugars (S-2'F-ANA-DNA chimeras). We determined their abilities to inhibit the protein expression and phosphorylation of Flk-1, a vascular endothelial growth factor receptor (VEGF), and VEGF biological effects on endothelial cell proliferation, migration, and platelet-activating factor synthesis. Treatment of endothelial cells with chimeric oligonucleotides reduced Flk-1 protein expression and phosphorylation more efficiently than with phosphorothioate antisenses (S-DNA). Nonetheless, these two classes of antisenses inhibited VEGF activities equally. Herein, we also demonstrated the capacity of the chimeric oligomers to elicit RNase H activity and their improved binding affinity for complementary RNA as compared with S-DNA.  相似文献   

11.
Minimally modified oligonucleotides belong to the second-generation antisense class. They are phosphodiester oligonucleotides with a minimum of phosphorothioate linkages in order to be protected against serum and cellular exonucleases and endonucleases. They activate RNase H, have weak interactions with proteins, and have thus a better antisense efficiency. Two of them have been designed from an all-phosphorothioate antisense oligonucleotide directed against mdrl-expressing cells. They are protected against serum and cellular enzymatic degradation by the self-forming hairpin d(GCGAAGC) at their 3'-end and by judiciously located phosphorothioate residues, depending on the cellular composition in exonucleases or endonucleases. Besides their already demonstrated ability to cleave pyrimidine sites, endonucleases show some specificity for CpG sites. Their activity is hindered if specific sites are involved in secondary structure as hairpin.  相似文献   

12.
G J Veal  S Agrawal    R A Byrn 《Nucleic acids research》1998,26(24):5670-5675
We have used a ribonuclease protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate experiments in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain the target gag region. RNase H cleavage products were detected at oligonucleotide concentrations as low as 0.01 microM and the RNase H activity was seen to be concentration dependent. Similar experiments with 1-, 3- and 5-mismatch oligonucleotides demonstrated sequence specificity at low concentrations, with cleavage of gag mRNA correlating with the predicted activities of the parent and mismatch oligonucleotides based on their hybridization melting temperatures. Experiments in living cells suggested that RNase H-specific antisense activity was largely determined by the amount of oligonucleotide taken up by the different cell lines studied. RNase H cleavage products were detected in antisense oligonucleotide treated MT-4 cells acutely infected with HIV-1 IIIB, but not in infected H9 cells treated with oligonucleotide under the same conditions. The data presented demonstrate potent and specific RNase H cleavage of HIV-1 mRNA mediated by an antisense oligonucleotide targeted to HIV-1 gag mRNA, and are in agreement with previous reports that the major obstacle to demonstrating antisense activity in living cells remains the lack of penetration of these agents into the desired cellular compartment.  相似文献   

13.
14.
To elucidate the role of endogenous transforming growth factor (TGF)-beta2 on human osteoblast cell, antisense phosphorothioate oligonucleotides (S-ODNs) complementary to regions in mRNA of TGF-beta2 were synthesized and examined their effects on TGF-beta2 production and cell proliferation in a human osteoblast cell line ROS 17/2. Antisense S-ODNs were designated for three different target regions in the mRNA of TGF-beta2. Among several antisense S-ODN analyzed, an oligonucleotide (AS-11) complementary to the translation initiation site of mRNA of TGF-beta2 demonstrated a selective and strong inhibitory effect on TGF-beta2 production in osteoblast cells. Other antisense S-ODNs which were designated for other regions in mRNA of TGF-beta2 and one- or three-base mismatched analogs of AS-11 showed little or much less antisense activities than AS-11. Therefore, the most effective target site in mRNA of TGF-beta2 is at the initiation codon region. The antisense effects of AS-11 were observed without reduction of levels of mRNA of TGF-beta2. Furthermore, the inhibition of TGF-beta2 expression by antisense S-ODN appeared to enhance cell proliferation, demonstrating the growth inhibitory effect of autocrine TGF-beta2 in osteoblast cells.  相似文献   

15.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

16.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.  相似文献   

17.
Complementary oligodeoxynucleotides (ODNs) that contain 2-aminoadenine and 2-thiothymine interact weakly with each other but form stable hybrids with unmodified complements. These selectively binding complementary (SBC) agents can invade duplex DNA and hybridize to each strand (Kutyavin, I. V., Rhinehart, R. L., Lukhtanov, E. A., Gorn, V. V., Meyer, R. B., and Gamper, H. B. (1996) Biochemistry 35, 11170-11176). Antisense ODNs with similar properties should be less encumbered by RNA secondary structure. Here we show that SBC ODNs strand invade a hairpin in the mini-exon RNA of Leishmania amazonensis and that the resulting heteroduplexes are substrates for Escherichia coli RNase H. SBC ODNs either with phosphodiester or phosphorothioate backbones form more stable hybrids with RNA than normal base (NB) ODNs. Optimal binding was observed when the entire hairpin sequence was targeted. Translation of L. amazonensis mRNA in a cell-free extract was more efficiently inhibited by SBC ODNs complementary to the mini-exon hairpin than by the corresponding NB ODNs. Nonspecific protein binding in the cell-free extract by phosphorothioate SBC ODNs rendered them ineffective as antisense agents in vitro. SBC phosphorothioate ODNs displayed a modest but significant improvement of leishmanicidal properties compared with NB phosphorothioate ODNs.  相似文献   

18.
化学修饰对反义寡核苷酸稳定性及抗流感病毒活性的影响   总被引:1,自引:0,他引:1  
为了探讨 A S O D N 化学修饰形式与 A S O D N 稳定性,体外细胞毒性以及抗流感病毒活性之间的关系,合成了 7 种不同化学修饰形式的 A S O D N:硫代 A S O D N 及其 3′端分别磷酸化和胆固醇修饰;3′与 5′端硫代,中间为天然结构的混合骨架 A S O D N;天然结构 A S O D N 及其 3′端分别磷酸化和胆固醇修饰等.测定了 7 种修饰体在小鼠血清, M D C K 细胞裂解液,含 2% 胎牛血清的 D M E M培养液以及水中的稳定性,体外细胞毒性和在细胞水平抗流感病毒活性.结果表明,混合骨架 A S O D N,硫代 A S O D N 及其 3′端接磷酸和胆固醇的修饰形式在小鼠血清, M D C K 细胞裂解液与含2% 胎牛血清的 D M E M 培养液中稳定性相对较高,作用 24~48 h 仅混合骨架 A S O D N 与硫代 A S O D N 发生部分降解;天然结构 A S O D N 及其 3′端接磷酸和胆固醇修饰体在 24 h 内大部分降解.所有 A S O D N 修饰体在水中具有很高稳定性,48 h 内未见降解作用.7 种 A S O D N 修饰形式在 M D C K 细胞中未表现明显的细胞毒性.硫代 A S O D N 及其 3′端接磷酸和胆  相似文献   

19.
Five different target regions along the length of the dengue virus type 2 genome were compared for inhibition of the virus following intracellular injection of the cognate antisense oligonucleotides and their analogs. Unmodified phosphodiester oligonucleotides as well as the corresponding phosphorothioate oligonucleotides were ineffective in bringing about a significant inhibition of the virus. Novel modified phosphorothioate oligonucleotides in which the C-5 atoms of uridines and cytidines were replaced by propynyl groups caused a significant inhibition of the virus. Antisense oligonucleotide directed against the target region near the translation initiation site of dengue virus RNA was the most effective, followed by antisense oligonucleotide directed against a target in the 3' untranslated region of the virus RNA. It is suggested that the inhibitory effect of these novel modified oligonucleotides is due to their increased affinity for the target sequences and that they probably function via an RNase H cleavage of the oligonucleotide:RNA heteroduplex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号