首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SMITH  C. J. 《Annals of botany》1975,39(1):101-111
Changes in assimilation and growth were studied in Picea sitchensis(Bong) Carr. seedlings initially grown in long days and subsequentlytransferred to short days. These results, and some from a supplementarystudy involving transfer to reduced light quantity alone, wereexamined in relation to tracheid development. Increases in photosynthesis conditioned by reduced daylengthwere greater in magnitude than those resulting from a reductionin light quantity alone. Possible reasons for this as well asthe apparent absence of such photoperiodic effects in the fieldare discussed. Following a reduction in daylength, 14C incorporation into reservesand new growth generally decreased while turnover materialsincreased in prominence. Some local changes in this generalpattern were apparent, these changes being consistent with growthchanges in the organs under consideration. Initial changes in tracheid wall thickness and diameter aftershort-day transfer appear to be correlated with expected andobserved changes in endogenous substrate, the results for tracheiddiameter confirming a previous observation that substrate levelexerts an important modifying influence on tracheid radial expansion.  相似文献   

2.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

3.
A comparative study, employing the concepts of growth analysis,has been made of the varying responses in the early vegetativephase of Gossypium hirsutum, Helianthus annuus, Phaseolus vulgaris,and Zea mays to combinations of light intensity (1.08, 2.16,3.24, 4.32, and 5.4 x 104 lx—photoperiod 14 h) and constantdiurnal air temperatures (10, 15, 20, 25, 30, and 35 °C).Depending on the combination of treatments, the temperatureof the internal tissues departed from air temperature by 6.9to 1.4 °C: so only the internal temperatures are cited here. For each species there are complex interactions between theeffects of light and temperature on the net assimilation rate,the leaf-area ratio, and the relative growth-rates of plantweight and leaf area. The magnitude of the changes induced bythe two factors vary both with the growth component and thespecies. The temperature responses are maximal up to 20–5°C while at the highest temperatures they may be negative.The temperature coefficients for leaf-area ratio are consistentlyless than those of the other three components: here betweenspecies the coefficients over 10–20 °C vary by a factorof 9.6, 5.4, and 5.1 for the rates of gain in plant weight andleaf area and the net assimilation rate, while the orderingwithin each growth component is species dependent. Under conditions of optimal temperature the relative growth-rateand net assimilation rate progressively increase, accordingto the species, up to either 4.32 or 5.4x 104 lx. The leaf-arearatio is always largest at the lowest intensity. The level oflight at which the rate of gain in leaf area reaches a maximumranges from 2.16x 104 lx for Phaseolus to between 4.32 and 5.40x104 lx for Gossypium. The highest relative growth-rate and net assimilation rate ofHelianthus exceed those of Zea substantially. Indeed the maximalassimilation rate for Helianthus of 2.10 g dm–2 week–1is the highest ever recorded under field or controlled conditions.Possible reasons for this reversal of the photosynthetic potentialsof the two species observed by previous workers are discussed.  相似文献   

4.
Chlorella pyrenoidosa can utilize sodium acetate as a carbonsource for growth in the light. Growth proceeds under aerobicconditions both in the presence and in the absence of carbondioxide, but under anaerobic conditions only in its presence.The assimilation of acetate does not result from oxidation tocarbon dioxide followed by photosynthetic fixation because theproducts of 14C-acetate assimilation are different from theproducts of 14CO2 fixation in the presence of unlabelled acetate. In aerobic conditions 10-6 M DCMU induces a pattern of acetateassimilation in the light similar to that in the dark. Thus,in the presence of DCMU in the light, less acetate carbon isincorporated into cells, particularly into lipids, polysaccharide,and protein, and more is released as carbon dioxide than inits absence. The effect of 4 x 10-3 M MFA on acetate assimilationin the presence of 10-6 M DCMU is the same in light and dark.Acetate assimilation is unaffected by desaspidine and sodiumbisulphite. The mean generation time of C. pyrenoidosa growing on acetatein the light under aerobic conditions is 20 hours. When 10-5M DCMU is added the mean generation time is 60 hours, the sameas that for Chlorella growing on acetate in the dark. The activityof the enzymes of the glyoxylate cycle, isocitrate lyase (E.C.4.1.3.1.)and malate synthetase (E.C.4.1.3.2.) is repressed in the light,but activity of both enzymes increases markedly when DCMU isadded.  相似文献   

5.
A comparison of photosynthesis-irradiance response curves (PEresponse curves) obtained through fast repetition rate (FRR)fluorometry and radiocarbon (14C) tracer method was made inthe chlorophyte, Dunaliella tertiolecta, grown under differentirradiance conditions. In FRR-based PE response curveexperiments, actinic light provided by white light-emittingdiodes (LEDs) was increased gradually from 0 to 1500 µmolquanta m–2 s–1 and the rate of photosyntheticelectron transport was determined at each light level. Short-termexperiments (20 min) of 14C-based PE response curvewere carried out with an improved photosynthetron, which containswhite LEDs as the light source. Irrespective of growth irradiance,the ratios of FRR to 14C-based initial slopes were almost uniform.The ratios of FRR- to 14C-based maximum rates were 25–36%higher than those of FRR- to 14C-based initial slopes. The relationshipbetween electron transport and carbon assimilation was non-linearwith increasing discrepancy towards high actinic light. Thisnon-linear relationship between FRR- and 14C-based estimatesis primarily due to the effect of physiological processes stimulatedat high levels of light, such as cyclic electron flow and theMehler reaction. The results of this study indicate that theFRR fluorometry can be used as a good indicator of photosyntheticrates from low to middle light levels, but becomes increasinglyquestionable as the maximum photosynthetic rate is approached.The degree to which this relationship is further affected bynutrient-status warrants investigation.  相似文献   

6.
Intercellular transport of 14C-labelled photoassimilates, bothin isolated upper shoots and in isolated internode-branchletcomplexes of Chara corallina, was measured. The isolated uppershoots were composed of a primary apex, two mature internodes,and three branchlet whorls. A 10 min loading of the isolatedupper shoot with H14CO3 resulted in a greater accumulationof 14C in the apical complex and branchlets than in the internodes,while a subsequent 50 min chase with unlabelled solution inthe light resulted in a greater accumulation of 14C in internodesthan in other parts of the shoot. In the isolated internode-branchlet complex, when the apex wasnot detached, the amount of 14C transported from branchletsto internodes was about fives times that transported from internodesto branchlets. Removal of the apex resulted in a decrease intransport from branchlets to internodes and an increase in transportin the opposite direction. In an attempt to explain the mechanism of the polar transportof photosynthetically fixed carbon between branchlets and internodes,photosynthetic activities of both types of cells were investigated.Detached branchlets have higher photosynthetic 14C-fixationactivities than those of internodes. Chlorophyll contents, measuredin terms of surface area, in internodes and branchlets werealmost identical. The ribulose-l,5-bisphosphate carboxylase(RuBPCase) activity of branchlets was 1.6 times that of internodes,and the rate of ferricyanide-dependent evolution of oxygen inbranchlets was 1.4 times that in internodes. Key words: Chara, internode, branchlet, polar transport, photosynthesis  相似文献   

7.
The assimilation of carbon (C) by, and distribution of 14C from,leaves at each end of an unbroken sequence of ten mature leaveson the main stolon of clonal plants of white clover (Trifoliumrepens L.) were measured to identify intra-plant factors determiningthe direction of C movement from leaves. Leaves at two intermediatepositions were also measured. Localized movement of 14C to sinks at the same node as, or atthe one to two nodes immediately behind, the fed leaf accountedfor 40–50% of the total 14C exported by all measured leaves.A further 50–60% of exported 14C was therefore availablefor more-distant sinks, and the direction of translocation ofthis C was determined by the relative total strength or demand(number x size x rate of activity or growth) of sinks forwardof, or behind, the leaf in question. Thus 85% of the 14C exportedfrom the youngest measured leaf moved toward the base of thestolon, while about 60% of the 14C exported from the oldestleaf moved acropetally. Defoliating plants to leave just one mature leaf on the mainstolon (at any one of the same four positions studied in undefoliatedplants), and no leaves on branches, resulted in: (1) increasednet photosynthetic rate in all residual leaves: (2) increased%export of fixed C from one of the four leaves; (3) increasedexport to the main stolon apex from all except the eldest leaf;(4) increased export to branches from three of the four leaves;and (5) decreased export to stolon tissue and roots from allleaves, within 3 d of defoliation. These responses would seemto ensure the fastest possible replacement of lost leaf areaand, thus, restoration of homeostatic growth. The observed patternsof C assimilation and distribution in both undefoliated anddefoliated white clover plants are consistent with the generalrules of source-sink theory; the distance between sources andcompeting sinks, and relative sink strength, emerge as the mostimportant intra-plant factors governing C movement. These resultsemphasize the need to consider plant morphology, and the modularnature of plant growth, when interpreting patterns of resourceallocation in clonal plants, or plant responses to stressessuch as partial defoliation. Trifolium repens L, white clover, photosynthesis, assimilate translocation, defoliation  相似文献   

8.
NILWIK  H. J. M. 《Annals of botany》1981,48(2):137-146
A growth analysis was carried out with sweet pepper plants grownin a phytotron. Irradiance conditions were: 0.84 or 3.25 MJm–2 in 8 h, 1.67 MJ m–2 in 16 h and 2.51 MJ m–2in 24 h. Temperatures applied were 25 or 21 °C during thephotoperiod in combination with 25, 21 and 17 or 21, 17 and13 °C respectively during the nyctoperiod. Highest values for leaf area and total dry weight were foundwhen applying 1.67 MJ m–2 in 16 h, followed by 3.25 MJm–2 in 8 h, irrespective of the temperature regime. Continuousirradiance ultimately resulted in leaf drop. A reduction inthe day temperature decreased leaf area and total dry weight.At a day temperature of 25 °C the dry weight increased withdecreasing night temperature when applying 3.25 MJ m–2in 8 h. At a day temperature of 21 °C leaf area and dryweight were reduced when 17 or 13 °C were applied duringa 16 h nyctoperiod. Values for relative growth rate, net assimilation rate, leafarea ratio and leaf weight ratio strongly decreased with advancingplant age. The effects of irradiance treatment on RGR and NARwere analogous to those on total dry weight while the reversepattern was observed for the LAR. A decrease in day temperaturedecreased the RGR. The effects of night temperature exhibitedstrong interactions with day temperature and photoperiod. Theinfluence of temperature on RGR was largely mediated throughchanges in the LAR. The latter parameter was highly correlatedwith the specific leaf weight. Capsicum annuum L., sweet pepper, growth analysis, irradiance, temperature, plant age  相似文献   

9.
The kinetics of 14C-2-acetate assimilation by Chlorella pyrenoidosain the light were examined. Under aerobic conditions the primaryproduct of acetate assimilation was succinic acid which, afterten seconds, contained over 60 per cent of the 14C incorporatedby the cells. The percentage of the total 14C in succinate fellwith time, while that in citrate and glutamate increased. After1800 sec over 60 per cent of 14C was present in two compounds,glutamic acid and an unknown compound (X). Glucose-6-phosphate,fructose-6-phosphate, phosphoglyceric acid and phosphoenolpyruvicacid became labelled after 60 sec but together never containedmore than one per cent of the total 14C incorporated. Underanaerobic conditions succinate was still the primary productof acetate assimilation, and the absence of carbon dioxide resultedin a decrease in 14C incorporation into compound X. The patternof acetate assimilation in acetate grown and acetate adaptedChlorella was very similar to that in photo-autotrophicallygrown Chlorella. In the presence of 10–6M DCMU, succinicacid was the primary product of acetate assimilation, but therewas an early Incorporation of 14C into glutamate, aspartate,and malate. 4 x10–3M MFA did not effect the early incorporationof 14C into succinic acid, but resulted in accumulation of 14Cin citrate and a decreased amount in glutamate and in compound X.  相似文献   

10.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

11.
Four co-existing species (Deschampsia flexuosa, Festuca ovina,Juncus squarrosus and Nardus stricta) were subjected to clippingand the net photosynthetic and dark respiration rates were followedafter this treatment for 50 d. Concurrently carbon partitioningin F. ovina plants clipped initially and again at 50 and 100d was examined. An expansion of new leaf lamina was observed with F. ovina,which had a greater net photsynthetic rate per unit leaf areathan unclipped lamina. The remaining leaf lamina (stubble) afterclipping also showed net photosynthetic and dark respirationrates greater than unclipped lamina; these responses were uniqueto F. ovina plants. N. stricta was the only other species toattain a pre-clipping photosynthetic rate within 6 d. Clipped F. ovina plants showed a change in carbon allocationpattern, with a reduction in carbon allocated to roots. 14Caccumulated in roots and stubble was shown to have a role inregrowth, as was current assimilate via the production of newleaf lamina. Plants initially clipped before exposure to 14C,redistributed less 14C to new shoot growth and, therefore, lostless when subsequently clipped. Further redistribution of 14Ccame from leaf stubble tissue and not at the expense of roots.The variation between species in clipping response are discussedin terms of the implications for coexistence. Carbon partitioning, clipping, gas exchange, grasses  相似文献   

12.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

13.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

14.
The responses of net CO2 assimilation to sudden changes in irradiancewere studied in Phaseolus vulgaris L. in the laboratory andthe field. For irradiance changes between 50 µmol m–2s–1 to 350 µmol m–2 s–1 in the laboratory,assimilation rate increased with half-times of 2.7 and 4.1 minin well-watered and water-stressed plants, respectively. Ina field experiment with a change in irradiance from 400 to 1200µmol m–2 s–1 the response was faster (half-time=c.1.2 min). In all cases when irradiance was returned to a lowvalue, assimilation declined rapidly with a half-time of approximately1 min, which approached the time resolution of the gas-exchangesystem. The corresponding changes in stomatal conductance in responseto both increasing and decreasing irradiance were much slowerthan the assimilation responses, indicating that biochemicalprocesses, rather than CO2 supply, primarily determined theactual rate of assimilation in these experiments. The conceptof stomatal limitation to photosynthesis is discussed in relationto these results. A simple model for assimilation in a fluctuating light environmentis proposed that depends on a steadystate light response curve,an ‘induction lag’ on increasing irradiance, andan induction-state memory. The likely importance of taking accountof such induction lags in natural canopy microclimates is considered. Key words: Models, Phaseolus vulgaris, photosynthetic induction, CO2 assimilation, stomatal limitation, sunflecks, water stress  相似文献   

15.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

16.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

17.
18.
Leaves of different ages from B. calycinum were exposed to 14CO2in light during day and night. The labelling pattern on thechromatogram differed with leaf age. Young leaves had similarpatterns to those of C3 plants during both day and night. Matureleaves showed high incorporation of 14C into C4 acids, especiallyat night. In contrast, no significant difference with leaf agewas observed in the pattern of dark 14CO2 fixation products.Study of the enzyme activity and the content of titratable acidat each leaf age suggested that high incorporation of 14C inC4 acids during the night was due to the simultaneous absorptionof CO2 by both enzymes RuDPcarboxylase and PEPcarboxylase. (Received November 24, 1977; )  相似文献   

19.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

20.
13C {1H} nuclear magnetic resonance spectroscopy has been usedto study the turnover of the low-molecular weight carbohydratemannitol in the marine brown alga Fucus spiralis L. During incubationof plants in seawater medium with 13C enriched bicarbonate,all of the NMR-visible 13C appeared in mannitol; no significant13C-labelling of laminaran was observed in seawater, in a hypo-salineor in a hyper-saline medium. Pulse-chase experiments showedthat intracellular mannitol was subject to turnover (half-time20 h), the rate of carbon assimilation into mannitol being slightlygreater than the dissimilation rate, possibly due to net mannitolsynthesis during growth. Fucus spiralis was conservative in the use of mannitol as anintracellular osmoticum. In a hypo-saline medium, mannitol showedno substantial change while potassium, the major cellular cation,was reduced. In contrast, mannitol increased substantially overa 12 h incubation period in a hyper-saline medium, whereas potassiumcontent remained constant. Mannitol assimilation and dissimilation rates were not affectedsignificantly by transfer to a hypo-saline medium. The increasedmannitol content of plants incubated in a hyper-saline mediumappeared to be due to a significant increase in the mannitolassimilation rate. Key words: Mannitol, Fucus, Phaeophyta, 13C-NMR, osmotic adjustment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号