首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collagen-binding adhesin of Enterococcus faecium, Acm, was identified. Acm shows 62% similarity to the Staphylococcus aureus collagen adhesin Cna over the entire protein and is more similar to Cna (60% and 75% similarity with Cna A and B domains respectively) than to the Enterococcus faecalis collagen-binding adhesin, Ace, which shares homology with Acm only in the A domain. Despite the detection of acm in 32 out of 32 E. faecium isolates, only 11 of these (all clinical isolates, including four vancomycin-resistant endocarditis isolates and seven other isolates) exhibited binding to collagen type I (CI). Although acm from three CI-binding vancomycin-resistant E. faecium clinical isolates showed 100% identity, analysis of acm genes and their promoter regions from six non-CI-binding strains identified deletions or mutations that introduced stop codons and/or IS elements within the gene or the promoter region in five out of six strains, suggesting that the presence of an intact functional acm gene is necessary for binding of E. faecium strains to CI. Recombinant Acm A domain showed specific and concentration-dependent binding to collagen, and this protein competed with E. faecium binding to immobilized CI. Consistent with the adherence phenotype and sequence data, probing with Acm-specific IgGs purified from anti-recombinant Acm A polyclonal rabbit serum confirmed the surface expression of Acm in three out of three collagen-binding clinical isolates of E. faecium tested, but in none of the strains with a non-functional pseudo acm gene. Introduction of a functional acm gene into two non-CI-binding natural acm mutant strains conferred a CI-binding phenotype, further confirming that native Acm is sufficient for the binding of E. faecium to CI. These results demonstrate that acm, which encodes a potential virulence factor, is functional only in certain infection-derived clinical isolates of E. faecium, and suggest that Acm is the primary adhesin responsible for the ability of E. faecium to bind collagen.  相似文献   

2.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

3.
The conjugative streptococcal transposon Tn916 was found to transfer naturally between a variety of gram-positive and gram-negative eubacteria. Enterococcus faecalis hosting the transposon could serve as a donor for Alcaligenes eutrophus, Citrobacter freundii, and Escherichia coli at frequencies of 10(-6) to 10(-8). No transfer was observed with several phototrophic species. Mating of an E. coli strain carrying Tn916 yielded transconjugants with Bacillus subtilis, Clostridium acetobutylicum, Enterococcus faecalis, and Streptococcus lactis subsp. diacetylactis at frequencies of 10(-4) to 10(-6). Acetobacterium woodii was the only gram-positive organism tested that did not accept the transposon from a gram-negative donor. The results prove the ability of conjugative transposable elements such as Tn916 for natural cross-species gene transfer, thus potentially contributing to bacterial evolution.  相似文献   

4.
The conjugative transposon Tn916 (15 kilobases), originally identified in Streptococcus faecalis DS16, has been cloned as an intact element on the pBR322-derived vector pGL101 in Escherichia coli. The EcoRI F' (EcoRI F::Tn916) fragment of pAM211 (pAD1::Tn916) was cloned into the single EcoRI site of pGL101 to form the chimera, pAM120, by selecting for the expression of Tn916-encoded tetracycline resistance (Tcr). Interestingly, in the absence of continued selection for Tcr, Tn916 excised from pAM120 at high frequency. This excision event resulted in a plasmid species consisting of the pGL101 vector and a 2.7-kilobase restriction fragment comigrating with the EcoRI F fragment of pAD1 during agarose gel electrophoresis. Filter blot hybridization experiments showed the 2.7-kilobase fragment generated as a result of Tn916 excision to be homologous with the EcoRI F fragment of pAD1. Analogous results were obtained with another chimera, pAM170, generated by ligating the EcoRI D' (EcoRI D::Tn916) fragment of pAM210 (pAD1::Tn916) to EcoRI-digested pGL101. Comparison of the AluI and RsaI cleavage patterns of the EcoRI F fragment isolated after Tn916 excision with those from an EcoRI F fragment derived from pAD1 failed to detect any difference in the two fragments: data in support of a precise Tn916 excision event in E. coli. Subcloning experiments showed that an intact transposon was required for Tn916 excision and located the Tcr determinant near the single HindIII site on Tn916. Although excision occurred with high frequency in E. coli, Tn916 insertion into the E. coli chromosome was a much rarer event. Tcr transformants were not obtained when pAM120 DNA was used to transform a polA1 strain, E. coli C2368.  相似文献   

5.
Enterococcus faecium DPC3675 is a derivative of E. faecium DPC1146 which contains a single copy of the conjugative transposon Tn916. Although the transposon is observed to be oriented in one direction in individual colonies, DNA extracted from cultures grown from these colonies contains the transposon in both orientations, as determined by PCR analysis and sequencing of the transposon/chromosome junctions. Therefore, Tn916 possesses a hitherto unreported ability to invert within a particular insertion site during growth in broth.  相似文献   

6.
Shuttle vectors (pMS3 and pMS4) which replicated in Escherichia coli and in gram-positive Acetobacterium woodii were constructed by ligating the replication origin of plasmid pAMβ1 with the E. coli cloning vector pUC19 and the tetM gene of streptococcal transposon Tn916. Electrotransformation of A. woodii was achieved at frequencies of 4.5 × 103 transformants per μg of plasmid DNA. For conjugal plasmid transfer, the mobilizable shuttle vector pKV12 was constructed by cloning the tetM gene into pAT187. Mating of E. coli containing pKV12 with A. woodii resulted in transfer frequencies of 3 × 10-6 to 7 × 10-6 per donor or recipient.  相似文献   

7.
The origin of transfer (oriT) of the 18-kb conjugative transposon Tn916 has been localized to a 466-bp region which spans nucleotides 15215 to 15681 on the transposon map. The oriT lies within an intercistronic region between open reading frames ORF20 and ORF21 that contains six sets of inverted repeats ranging from 10 to 20 bp in size. The segment contains three sequences showing identity in 9 of 12 bp to the consensus nicking site (nic) of the IncP family of conjugative plasmids found in gram-negative bacteria. Overlapping one of these sequences is a region similar to the nic site of the F plasmid. Functionality was based on the ability of the oriT-containing sequence to provide a cis-acting mobilization of chimeras involving the shuttle vector pWM401 in response to activation in trans by an intact chromosome-borne transposon Tn916 delta E. Cloned segments of 466 or 376 nucleotides resulted in unselected cotransfer of the plasmid at levels of about 40% when selection was for Tn916 delta E, whereas a 110-bp segment resulted in cotransfer at a frequency of about 7%. Mobilization was specific in that gram-positive plasmids, such as pAD1 and pAM beta 1, and the gram-negative plasmids pOX38 (a derivative of F) and RP1 did not mobilize oriT-containing chimeras.  相似文献   

8.
Comparative genome analysis of Enterococcus faecium recently revealed that a genomic island containing the esp gene, referred to as the esp-containing pathogenicity island (esp PAI), can be transferred by conjugation and contains a partial Tn916-like element and an integrase gene, intA. Here, we characterize the role of intA in the excision of the esp PAI. An intA insertion-deletion mutant in E. faecium E1162 (E1162ΔintA) was constructed and in trans complemented with wild-type intA (E1162ΔintA::pEF30). Circular intermediates (CI) of excised esp PAI were determined using inverse PCR analysis on purified chromosomal DNA from strains E1162, E1162Δesp, E1162ΔintA, and E1162ΔintA::pEF30. In E1162 and E1162Δesp, CI of the esp PAI were detected. No CI were detected in E1162ΔintA, while in the complemented strain E1162ΔintA::pEF30 CI formation was restored, indicating that intA is essential for excision and subsequent mobilization of the esp-containing genomic island in E. faecium. Based on the fact that this island can be mobilized and is self-transmissible, we propose to change the name of the esp PAI to ICEEfm1.  相似文献   

9.
Tn5397 is a conjugative transposon that was originally isolated from Clostridium difficile. Previous analysis had shown that the central region of Tn5397 was closely related to the conjugative transposon Tn916. However, in this work we obtained the DNA sequence of the ends of Tn5397 and showed that they are completely different to those of Tn916. Tn5397 did not contain the int and xis genes, which are required for the excision and integration of Tn916. Instead, the right end of Tn5397 contained a gene, tndX, that appears to encode a member of the large resolvase family of site-specific recombinases. TndX is closely related to the TnpX resolvase from the mobilizable but nonconjugative chloramphenicol resistance transposons, Tn4451 from Clostridium perfringens and Tn4453 from C. difficile. Like the latter elements, inserted copies of Tn5397 were flanked by a direct repeat of a GA dinucleotide. The Tn5397 target sites were also shown to contain a central GA dinucleotide. Excision of the element in C. difficile completely regenerated the original target sequence. A circular form of the transposon, in which the left and right ends of the element were separated by a GA dinucleotide, was detected by PCR in both Bacillus subtilis and C. difficile. A Tn5397 mutant in which part of tndX was deleted was constructed in B. subtilis. This mutant was nonconjugative and did not produce the circular form of Tn5397, indicating that the TndX resolvase has an essential role in the excision and transposition of Tn5397 and is thus the first example of a member of the large resolvase family of recombinases being involved in conjugative transposon mobility. Finally, we showed that introduction of Tn916 into a strain containing Tn5397 induced the loss of the latter element in 95.6% of recipients.  相似文献   

10.
Transposon-916-like elements in clinical isolates of Enterococcus faecium   总被引:3,自引:0,他引:3  
Tetracycline (Tc) resistance was found in nine out of ten clinical isolates of Enterococcus faecium. Conjugative transposons, designated Tn5031, Tn5032 and Tn5033, were present in the chromosome of three isolates. The transposons were similar both structurally and functionally to Tn916 containing the tetM determinant. A large non-conjugative plasmid found in a fourth isolate contained an element homologous to Tn916. The four isolates containing the element showing homology to Tn916 exhibited a substantially higher level of Tc resistance than the remaining five Tc-resistant isolates. Tc-resistance genes which have not been identified are apparently responsible for the low-level Tc resistance in five clinical isolates.  相似文献   

11.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

12.
Transposon Tn916 was shown to be capable of direct conjugative transfer in broth and membrane matings between strains of Escherichia coli K12 and between E. coli K12 and Haemophilus influenzae type b. Only Tn916 was transferred, but Tn916 donor ability was not itself inheritable by the recipients and seemed to be associated with the presence of Tn916 on a non-conjugative pBR322-derived vector in the original donor strain. Transfer of Tn916 by conjugation was found to be an efficient method for producing insertion mutations in the chromosome of recipient cells. Although such insertions were unstable when the cells were grown under non-selective conditions, it was possible to show that over 40% of the isolated Tn916 insertions in the chromosome of E. coli K12 were in gene(s) concerned with histidine biosynthesis, implying that there is a partial hot-spot for Tn916 insertion on the E. coli K12 chromosome. When a strain of H. influenzae type b was used as a recipient, out of approximately 1500 transconjugants tested, two mutants were isolated with insertions in genes controlling the expression of iron-regulated transferrin-binding proteins. These mutants constitutively produced major 76 kDa and minor 90 kDa proteins which bound transferrin, even when grown under iron-sufficient conditions. Tn916 insertion mutagenesis, following transfer by conjugation, is a convenient method for isolating mutations in genes concerned with iron acquisition by this important human pathogen.  相似文献   

13.
In the present study, a collection of 187 Enterococcus food isolates mainly originating from European cheeses were studied for the phenotypic and genotypic assessment of tetracycline (TC) resistance. A total of 45 isolates (24%) encompassing the species Enterococcus faecalis (n = 33), E. durans (n = 7), E. faecium (n = 3), E. casseliflavus (n = 1), and E. gallinarum (n = 1) displayed phenotypic resistance to TC with MIC ranges of 16 to 256 microg/ml. Eight of these strains exhibited multiresistance to TC, erythromycin, and chloramphenicol. By PCR detection, TC resistance could be linked to the presence of the tet(M) (n = 43), tet(L) (n = 16), and tet(S) (n = 1) genes. In 15 isolates, including all of those for which the MIC was 256 micro g/ml, both tet(M) and tet(L) were found. Furthermore, all tet(M)-containing enterococci also harbored a member of the Tn916-Tn1545 conjugative transposon family, of which 12 erythromycin-resistant isolates also contained the erm(B) gene. Filter mating experiments revealed that 10 E. faecalis isolates, 3 E. durans isolates, and 1 E. faecium isolate could transfer either tet(M), tet(L), or both of these genes to E. faecalis recipient strain JH2-2. In most cases in which only tet(M) was transferred, no detectable plasmids were acquired by JH2-2 but instead all transconjugants contained a member of the Tn916-Tn1545 family. Sequencing analysis of PCR amplicons and evolutionary modeling showed that a subset of the transferable tet(M) genes belonged to four sequence homology groups (SHGs) showing an internal homology of > or = 99.6%. Two of these SHGs contained tet(M) mosaic structures previously found in Tn916 elements and on Lactobacillus and Neisseria plasmids, respectively, whereas the other two SHGs probably represent new phylogenetic lineages of this gene.  相似文献   

14.
J Cao  P A Kapke    F C Minion 《Journal of bacteriology》1994,176(14):4459-4462
Mycoplasma gallisepticum causes respiratory disease in avian species, but little is known about its mechanism(s) of pathogenesis. These studies were undertaken in order to develop genetic systems for analysis of potential virulence factors. M. gallisepticum was transformed with plasmids containing one of the gram-positive transposons Tn916 or Tn4001, which inserted randomly into the mycoplasmal chromosome. Plasmids containing cloned chromosomal DNA were also constructed and tested for integration into regions of DNA homology derived either from chromosomal fragments or from the gentamicin resistance marker from Tn4001. These studies demonstrate that M. gallisepticum is amenable to transformation with both transposons and integrative vectors.  相似文献   

15.
Shuttle vector pAT18 was transferred by conjugation fromEscherichia coliS17-1 toEnterococcus faecalisOG1RF andEnterococcus faeciumSE34. Transfer was mediated by the transfer functions of plasmid RK2 inE. coliS17-1 and the origin of conjugal transfer (oriT) located on pAT18. TheoriTsequence was then inserted into two plasmids to generate vectors pTEX5235 and pTEX5236. These two vectors cannot replicate in gram-positive bacteria and can be used to make insertion mutants in gram-positive bacteria. An internal sequence from an autolysin gene ofE. faecalisOG1RF was cloned into pTEX5235 and transferred by conjugation fromE. coliS17-1 toE. faecalisOG1RF. The plasmid was found to integrate into the chromosome of OG1RF by a single crossover event, resulting in a disrupted autolysin gene. A cosmid carrying the pyrimidine gene cluster fromE. faecalis,with a transposon insertion inpyrC,was also transferred fromE. coliS17-1 toE. faecalisOG1RF. After selection for the transposon, it was found to have recombined into the recipient chromosome by a double crossover between the cosmid and the chromosome of OG1RF. This resulted in apyrCknockout mutant showing an auxotrophic phenotype.  相似文献   

16.
Many bacterial genera, including Bacteroides spp., harbor mobilizable transposons, a class of transfer factors that carry genes for conjugal DNA transfer and, in some cases, antibiotic resistance. Mobilizable transposons are capable of inserting into and mobilizing other, nontransferable plasmids and are implicated in the dissemination of antibiotic resistance. This paper presents the isolation and characterization of Tn5520, a new mobilizable transposon from Bacteroides fragilis LV23. At 4,692 bp, it is the smallest mobilizable transposon reported from any bacterial genus. Tn5520 was captured from B. fragilis LV23 by using the transfer-deficient shuttle vector pGAT400DeltaBglII. The termini of Tn5520 contain a 22-bp imperfect inverted repeat, and transposition does not result in a target site repeat. Tn5520 also demonstrates insertion site sequence preferences characterized by A-T-rich nucleotide sequences. Tn5520 has been sequenced in its entirety, and two large open reading frames whose predicted protein products exhibit strong sequence similarity to recombinase-integrase enzymes and mobilization proteins, respectively, have been identified. The transfer, mobilization, and transposition properties of Tn5520 have been studied, revealing that Tn5520 mobilizes plasmids in both B. fragilis and Escherichia coli at high frequency and also transposes in E. coli.  相似文献   

17.
Many clinical isolates of Enterococcus faecium are resistant to neutrophil (PMN)-mediated phagocytosis and killing in the presence of normal human serum. We have now examined the ability of specific polyclonal rabbit antibodies to promote opsonization and killing of phagocytosis-resistant E. faecium. Immune rabbit serum generated against formalin-killed E. faecium TX0016, a phagocytosis-resistant strain, markedly promoted binding of TX0016 organisms to PMNs and PMN-mediated killing. These effects were dramatically reduced by (a) adsorption of immune serum with E. faecium TX0016, but not by adsorption with a strain of E. faecium susceptible to phagocytosis, and (b) incubation of immune serum with carbohydrate purified from TX0016, but not by incubation with a surface protein extract from TX0016. IgG purified from immune serum was unable by itself to promote bacterial binding to PMNs. However, specific IgG was able to promote binding to PMNs and PMN-mediated killing in the presence of normal human serum as a complement source, as were F(ab')(2) and Fab fragments produced from it, and the alternative pathway of complement was sufficient to promote IgG- and F(ab')(2)-mediated opsonization. PMN complement receptor type 3, but not complement receptor type 1, was involved in bacterial binding to PMNs induced by the combination of F(ab')(2) fragments and normal human serum. These results suggest that opsonization by antibodies potentially directed against bacterial carbohydrate, in conjunction with complement activation, has an important role in the host defense against phagocytosis-resistant E. faecium.  相似文献   

18.
Excision and formation of a covalently closed circular transposon molecule are required for conjugative transposition of Tn916 but are not the only factors that limit the frequency of conjugative transposition from one host to another. We found that in gram-positive bacteria, an increase in the frequency of excision and circularization of Tn916 caused by expression of integrase (Int) and excisionase (Xis) from a xylose-inducible promoter does not lead to an increase in the frequency of conjugative transposition. We also found that the concentration of Int and Xis in the recipient cell does not limit the frequency of conjugative transposition and that increased excision does not result in increased expression of transfer functions required to mobilize a plasmid containing the Tn916 origin of transfer. We conclude that in gram-positive hosts in which the Tn916 functions Int and Xis are overexpressed, the frequency of conjugative transposition is limited by the availability of transfer functions.  相似文献   

19.
K Dybvig  J Alderete 《Plasmid》1988,20(1):33-41
A procedure for transformation of the murine pathogen Mycoplasma pulmonis with plasmid pAM120 was developed. This plasmid replicates in Escherichia coli and contains the gram-positive transposon Tn916. The transformation protocol also proved effective for the swine pathogen Mycoplasma hyorhinis. The tetracycline resistance determinant of Tn916 was expressed in transformed myocoplasma cells, and Tn916 was found inserted into numerous sites in the recipient chromosomes of M. pulmonis and M. hyorhinis, indicating that transposition had occurred. Interestingly, some transformants of M. pulmonis and M. hyorhinis contained cointegrate structures which apparently had a complete copy of the entire donor plasmid (pAM120) inserted into the recipient chromosome. Subsequent transposition of inserted Tn916 was observed in passaged clones of transformed M. pulmonis.  相似文献   

20.
New vectors were constructed for efficient transposon Tn917-mediated mutagenesis of poorly transformable strains of Streptococcus mutans(pTV1-OK) and subsequent recovery of interrupted genes in Escherichia coli (pT21delta2TetM). In this report, we demonstrate the utility of Tn917 mutagenesis of a poorly transformable strain of S. mutans (JH1005) by showing (i) the conditional replication of pTV1-OK, a repA(Ts) derivative of the broad-host-range plasmid pWVO1 harboring Tn9l7, in JH1005 at the permissive temperature (30 degrees C) versus that at the nonpermissive temperature (45 degrees C); (ii) transposition frequencies similar to those reported for Bacillus subtilis (10(-5) to 10(-4)) with efficient plasmid curing in 90 to 97% of the erythromycin-resistant survivors following a temperature shift to 42 to 45 degrees C; and (iii) the apparent randomness of Tn917 insertion as determined by Southern hybridization analysis and the ability to isolate nutritional mutants, mutants in acid tolerance, and mutants in bacteriocin production, at frequencies ranging from 0.1 to 0.7%. Recovery of transposon-interrupted genes was achieved by two methods: (i) marker rescue in E. coli with the recovery vector pTV21delta2TetM, a tetracycline-resistant and ampicillin-sensitive Tn9l7-pBR322 hybrid, and (ii) "shotgun" cloning of genomic libraries of Tn917 mutants into pUC19. Sequence analyses revealed insertions at five different genetic loci in sequences displaying homologies to Clostridium spp.fhs (66% identity), E. coli dfp (43% identity), and B. subtilis ylxM-ffh (58% identity), icd (citC [69% identity]), and argD (61% identity). Insertions in icd and argD caused nutritional requirements; the one in ylxM-ffh caused acid sensitivity, while those in fhs and dfp caused both acid sensitivity and nutritional requirements. This paper describes the construction of pTV1-OK and demonstrates that it can be efficiently employed to deliver Tn917 into S. mutans for genetic analyses with some degree of randomness and that insertions in the chromosome can be easily recovered for subsequent characterization. This represents the first published report of successful Tn9l7 mutagenesis in the genus Streptococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号