首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1 first lower phase - NR nitrate reductase - NRA nitrate-reductase activity - PM plasma membrane - T:p Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio - U2 second upper phase  相似文献   

2.
Young chicory plants (Cichorium intybus L. var. Witloof) show a tenfold higher nitrate reductase NR activity in roots compared to leaves. Northern analysis revealed, besides the nitrate inducibility of the nitrate reductase gene (nia), a higher level of expression in the roots. By modifying the external nitrate concentration the NR activity in the leaves remained negligible whereas a maximal activity was observed in the roots when grown in the presence of 5 mM nitrate. Surprisingly, variation of the external nitrate concentration induced changes in the spatial regulation of nia within the root. In-situ hybridization mainly localized nia mRNA in the cortical cells of roots grown at low nitrate concentrations (0.2 mM). At high nitrate concentrations (5 mM), nia mRNA was more abundant in the vascular tissues. The root apex revealed a strong signal under both conditions. The isolation and characterization of the NR structural gene from chicory is also presented. Southern blot analysis revealed the presence of a single nia gene per haploid genome of chicory.  相似文献   

3.
4.
Spheroplasts from Rhodobacter capsulatus E1F1 cells grown in nitrate maintained nitrate uptake and nitrate reductase activity only when they were illuminated under anaerobiosis in the presence of the periplasmic fraction and nitrate. The effects on nitrate uptake and nitrate reductase activity of spheroplasts were observed at low concentrations of periplasmic protein (about 50 x ml-1). Periplasm from nitrate-grown cells was also required for nitrate reductase activity in spheroplasts isolated from ammonia-grown or diazotrophic cells which initially lacked this enzymatic activity. Both the maintenance of nitrate reductase in spheroplasts from nitrate-grown cells and the appearance of the activity in spheroplasts from diazotrophic cells were dependent on de novo protein synthesis. A periplasmic, 45-kDa protein which maintained the activity of nitrate reductase in spheroplasts was partially purified by gel filtration chromatography of periplasm obtained from nitrate-grown cells.Abbreviations NR nitrate reductase - CCCP carbonyl cyanide m-chlorophenylhydrazone - CAM chloramphenicol  相似文献   

5.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

6.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

7.
The regulatory properties of NADH-dependent nitrate reductase (NR) in desalted root extracts from hydroponically grown cucumber (Cucumis sativus L.) seedlings were examined. The lowest activity of NR was detected in extracts incubated with Mg2+ and ATP. An inhibitory effect of Mg-ATP was cancelled in the presence of staurosporine (the protein kinase inhibitor) and completely reversed after addition of ethylenediaminetetraacetate (EDTA) as well as AMP into reaction mixture. Reactivation of enzyme due to AMP presence, contrary to the chelator-dependent NR activation, was sensitive to microcystin LR (the protein phosphatase inhibitor). Above results indicated that the nitrate reductase in cucumber roots was regulated through reversible phosphorylation of enzyme protein. A drop in the activity of NR was also observed after incubation of enzyme at low pH. At low pH, the presence of ATP alone in the incubation medium was sufficient to inactivate NR, indicating that H+ can substitute the Mg2+ in formation of an inactive complex of enzyme. ATP-dependent inactivation of NR at low pH was prevented by staurosporine and reversed by AMP. However, AMP action was not altered by microcystin LR suggesting that in low pH the nucleotide induced reactivation of NR is not limited to the protein phosphorylation.  相似文献   

8.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   

9.
C. Schuster  R. Oelmüller  H. Mohr 《Planta》1987,171(1):136-143
Application of nitrate leads to an induction of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of dark-grown mustard (Sinapis alba L.) seedlings, and this induction can strongly be promoted by a far-red-light pretreatment — operating through phytochrome — prior to nitrate application. This light treatment is almost ineffective — as far as enzyme appearance is concerned — if no nitrate is given. When nitrate is applied, the stored light signal potentiates the appearance of NR and NIR in darkness, even in the absence of active phytochrome, to the same extent as continuous far-red light. This action of previously stored light signal lasts for approx. 12 h.Storage of the light signal was measured for NR and NIR. The process shows enzyme-specific differences. Storage occurs in the absence as well as in the presence of nitrate, i.e. irrespective of whether or not enzyme synthesis takes place. The kinetics of signal transduction and signal storage indicate that the formation and action of the stored signal are a bypass to the process of direct signal transduction. Signal storage is possibly a means of enabling the plant to maintain the appropriate levels of NR and NIR during the dark period of the natural light/dark cycle.Abbreviations cD continuous darkness - cFR continuous far-red light - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red absorbing) - Pr phytochrome (red absorbing) - R red light - RG9-light long wavelength far-red light obtained with RG9 glass filter - - Ptot total phytochrome (Pr+Pfr) Professor Wilhelm Nultsch mit guten Wünschen zum 60. Geburtstag  相似文献   

10.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

11.
M. Ekés 《Planta》1981,151(5):439-446
Electron-dense precipitate was found consistently in the plastid envelope compartment in etiolated barley (Hordeum vulgare L.) leaves, incubated prior to fixation with succinate or malate as substrates and ferricyanide as the electron acceptor. Sulfhydryl reagents p-chloromercuribenzoate and N-ethylmaleimide abolished this reaction, while KCN did not affect it. Prefixation with 0.1% glutaraldehyde followed by incubation in basic media did not change the fine structural localization of precipitate, whereas pretreatment with 1.25% glutaraldehyde resulted in aspecific precipitation. Omission of the subtrate from the medium brought about diminished or negative reaction. Our results indicate that a (possibly not yet assembled) nitrate reductase complex is present in the plastid envelope compartment, the diaphorase part of which is responsible for the observed precipitation.Abbreviations PCMB p-chloromercuribenzoate - NEM N-ethylmaleimide - NR nitrate reductase - SDH succinic dehydrogenase  相似文献   

12.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

13.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

14.
NADH:nitrate reductase (EC 1.6.6.1) activity in the crude extract from Spirodela polyrhiza was relatively labile in vitro. Inclusion of polyvinylpolypyrrolidone into the extraction medium had only a slight effect on the stability of the enzyme, whereas addition of 3 % casein, azocasein, or other proteins to the extraction medium greatly increased the nitrate reductase (NR) activity. Various protease inhibitors were tested for their ability to prevent the loss of NR activity in vitro. Iodoacetate and para-chloromercuric benzoate, the thiol-protease inhibitors, as well as pepstatin, the aspartic-protease inhibitor had no effect on stability of the nitrate reductase. EDTA had a slight stimulatory effect, whereas 5 mM o-phenantroline, another inhibitor of the metallo-proteases increased the activity of nitrate reductase. The highest enzyme activity was found in the presence of phenylmethylsulphonyl fluoride and di-isopropyl phosphorofluoridate both being serine-protease inhibitors. The protease-like inactivator was separated from Spirodela polyrhiza by ammonium sulfate fractionation and acid treatment (pH 4.0). After centrifugation the protein of inactivator in supernatant adjusted to pH 7.5 was removed. When this fraction was examined by electrophoresis in polyacrylamide which copolymerized with edestin, the protein of the nitrate reductase inactivator remained at the cathode. Fractions containing a protein of inactivator degraded casein to products soluble in trichloroacetic acid. Inhibition of the inactivator proteolytic activity by phenylmethylsulphonyl fluoride and di-isopropyl phosphorofluoridate but not by other reagents (thiol- and metallo-protease inhibitors) suggested the involvement of a serine residue at its active site. The inactivator fraction from Spirodela polyrhiza resulted in a loss of the nitrate reductase activity in crude extracts from both cucumber and corn seedlings. A biochemical nature a protein of the nitrate reductase inactivator from S. polyrhiza is discussed.  相似文献   

15.
Hachtel  Wolfgang  Strater  Tim 《Plant and Soil》2000,221(1):33-38
A 1535 bp promoter of the nitrate reductase gene (nia) from birch (Betula pendula) and a series of 5′ deletions were fused to the β-glucuronidase (GUS) gene and introduced into Nicotiana plumbaginifolia. In transgenic plants the NR promoter sequences directed strong GUS expression in the root epidermal hair cells, and in phloem cells of leaf and stem vascular tissue. The NR promoter confers also a significant stimulation of the GUS gene expression by nitrate. These findings might indicate that nitrate flow is one of the signals involved into tissue and cell specific expression of the NR promoter GUS fusions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Work is described which suggests that glutamine synthetase (GS) could play an important and direct regulatory role in the control of NO3 assimilation by the alga. In both steady-state cells and ones disturbed physiologically by changes in light or nitrogen supply the assimilation of NO3 appears to be limited by the activity of GS. Moreover although in normal cells NH3 can completely inhibit NO3 uptake, promote the deactivation of nitrate reductase (NR) and repress the synthesis of NR and nitrite reductase (NIR), these controls are relaxed in cells in which GS is deactivated by treatment with L-methionine-DL-sulfoximine (MSO). It is proposed that the reversible deactivation of GS may play an important part in the regulation of NO3 assimilation although it is still not clear whether the enzyme itself or products of its metabolism are responsible.Abbreviations GS glutamine synthetase - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - NR nitrate reductase - NIR nitrite reductase - GDH glutamate dehydrogenase - CHX cycloheximide - MSO L-methionine-DL-sulfoximine - FAD flavine adenine dinucleotide  相似文献   

17.
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.  相似文献   

18.
Cells of Rhizobium loti strains T1 and U226 cultured in defined medium with glutamate as the only nitrogen source and bacteroids isolated from root nodules of Lotus corniculatus, L. pedunculatus and L. tenuis did not show constitutive (non-nitrate induced) nitrate reductase activity (NRA). In contrast, nitrite reductase activity (NiRA) was present in both free-living cells and bacteroids of either strain T1 or U226. Constitutive NRA and NiRA were detected in the cytosol fraction from nodules of all three symbioses examined. An induced NRA was expressed in bacteroids after a 10 h incubation in the presence of nitrate.  相似文献   

19.
V. K. Rajasekhar  H. Mohr 《Planta》1986,168(3):369-376
Nitrite reductase (NIR; EC 1.7.7.1) is a central enzyme in nitrate assimilation and is localized in plastids. The present study concerns the regulation of the appearance of NIR in cotyledons of the mustard (Sinapis alba L.) seedling. It was shown that light exerts its positive control over the nitrate-mediated induction of NIR via the farred-absorbing form of phytochrome. Without nitrate the light effect cannot express itself; even though the light signal is accumulated in the cotyledons it remains totally cryptic in the absence of nitrate. Moreover, it was recognised that intact plastids are important in the control of the appearance of NIR. If the plastids are damaged by photooxidation the action of nitrate and phytochrome on NIR appearance is abolished. The appearance of nitrate reductase (NR; EC 1.6.6.1) responds similarly to photooxidative damage even though this enzyme is cytosolic. While the data strongly indicate that some plastidic signal is a prerequisite for the nitrate-induced and phytochrome-modulated appearance of NIR and NR, the possibility could not be ruled out that photooxidative damage affects the accumulation of NIR in the organelle.Abbreviations c continuous - D darkness - FR far-red light - NADP-GPD NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.1.13) - NF Norflurazon - NIR nitrite reductase (EC 1.7.7.1.) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red light obtained with RG9 glass filter - R red light - RG9-light long wavelenght far-red light obtained with RG9 glass filter - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - WL white light - WLs strong white light (28 W m-2)  相似文献   

20.
The plasma membranes of Chlorella saccharophila (Krüger) Nadson cells contained a membrane-bound nitrate reductase. This form of nitrate reductase was purified and characterized. Several differences from the soluble form of nitrate reductase were apparent, the most important being: (i) the greater hydrophobicity, as proven using Triton X-114 phase separation, hydrophobic interaction chromatography and stimulation by phosphilipids; (ii) the differences in the native molecular mass compared with Chlorella sorokiniana (Krüger) Nadson; and (iii) the different polypeptide pattern obtained by two-dimensional polyacrylamide gel electrophoresis. Only the plasma-membrane-bound nitrate reductase could be found in both inside-out and right-side-out plasma-membrane vesicles.Abbreviations HIC hydrophobic interaction chromatography - IEF isoelectric focusing - MV methyl viologen - NR nitrate reductase - PM plasma membrane - PMNR plasma-membrane-bound nitrate reductase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis This work is part of the Ph.D. Thesis of Christine Stöohr, University of Göttingen. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号