首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the first evidence of tetrachromacy among invertebrates. The Japanese yellow swallowtail butterfly, Papilio xuthus, uses colour vision when foraging. The retina of Papilio is furnished with eight varieties of spectral receptors of six classes that are the ultraviolet (UV), violet, blue (narrow-band and wide-band), green (single-peaked and double-peaked), red and broad-band classes. We investigated whether all of the spectral receptors are involved in colour vision by measuring the wavelength discrimination ability of foraging Papilio. We trained Papilio to take nectar while seeing a certain monochromatic light. We then let the trained Papilio choose between two lights of different wavelengths and determined the minimum discriminable wavelength difference Deltalambda. The Deltalambda function of Papilio has three minima at approximately 430, 480 and 560nm, where the Deltalambda values approximately 1nm. This is the smallest value found for wavelength discrimination so far, including that of humans. The profile of the Deltalambda function of Papilio can be best reproduced by postulating that the UV, blue (narrow-band and wide-band), green (double-peaked) and red classes are involved in foraging. Papilio colour vision is therefore tetrachromatic.  相似文献   

2.
Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.  相似文献   

3.
Chromaticity diagrams for tri- and tetrachromatic animals (with three and four cone classes in their retina, respectively, contributing to colour perception) are widely used in studies of animal colour vision. These diagrams not only allow the graphical representation of perceived colours, but the coordinates of colours plotted within these diagrams can be used to extract colour metrics, such as hue and chroma, or can be used directly in statistical analyses, and therefore aid our understanding of vision-mediated behaviour. However, many invertebrate species have more than four cone classes in their retina, and may therefore have pentachromatic or hexachromatic (or greater) vision. This paper describes an extension to the triangular and tetrahedral chromaticity diagrams commonly used for tri- and tetrachromats, respectively, that allows colour coordinates (and hence colour metrics) to be calculated for animals with more than four cone classes. Because the resulting chromaticity diagrams have more than three dimensions, meaningful ways to visualise the spatial position of plotted colours are discussed.  相似文献   

4.
Among birds, single cone sensitivities responsible for color vision appear surprisingly conserved even though chromatic signals vary greatly. Thus it is widely held that avian visual signal and receptor characteristics are rarely aligned. Analysis of a diverse passerine clade (Passerida) with characteristically ultraviolet-sensitive (UVS) vision revealed that plumage carotenoid reflectance spectra matched cone maximal sensitivities at several levels: (1) plumage carotenoid reflectance minima and maxima in aggregate aligned with the four UVS single cones; (2) the corresponding reflectance features of yellow (hydroxy- and ε-keto) and red (3- and 4-β-keto) carotenoid classes aligned with different combinations of cones; (3) pairs of reflectance features (e.g. one minimum and one maximum) of each carotenoid class aligned with pairs of (opponent) cones that evoke chromatic perception; (4) passerid plumage carotenoids aligned more closely to their own (UVS) visual system than to the distinctive homologous cone classes of the violet-sensitive system found in other birds. The ubiquitous occurrence of plumage carotenoids ipso facto demonstrates that alignments of avian visual signals and receptors are widespread, and provides novel evidence that carotenoids are important to avian communication. Moreover, alignment of different physical spectra to different cone combinations in a fixed receptor array provides a straightforward mechanism that accommodates signal diversity within the context of a relatively conserved visual system. The distinct patterns of variation and alignment observed for yellow versus red carotenoids further suggest that these pigment classes convey different physical aspects of content, which may foster carotenoid-based plumage diversity through signal design trade-offs.  相似文献   

5.
Spectral tuning and the visual ecology of mantis shrimps   总被引:6,自引:0,他引:6  
The compound eyes of mantis shrimps (stomatopod crustaceans) include an unparalleled diversity of visual pigments and spectral receptor classes in retinas of each species. We compared the visual pigment and spectral receptor classes of 12 species of gonodactyloid stomatopods from a variety of photic environments, from intertidal to deep water (> 50 m), to learn how spectral tuning in the different photoreceptor types is modified within different photic environments. Results show that receptors of the peripheral photoreceptors, those outside the midband which are responsible for standard visual tasks such as spatial vision and motion detection, reveal the well-known pattern of decreasing lambdamax with increasing depth. Receptors of midband rows 5 and 6, which are specialized for polarization vision, are similar in all species, having visual lambdamax-values near 500nm, independent of depth. Finally, the spectral receptors of midband rows 1 to 4 are tuned for maximum coverage of the spectrum of irradiance available in the habitat of each species. The quality of the visual worlds experienced by each species we studied must vary considerably, but all appear to exploit the full capabilities offered by their complex visual systems.  相似文献   

6.
Different classes of photoreceptors (PRs) allow animals to perceive various types of visual information. In the Drosophila eye, the outer PRs of each ommatidium are involved in motion detection while the inner PRs mediate color vision. In addition, flies use a specialized class of inner PRs in the "dorsal rim area" of the eye (DRA) to detect the e-vector of polarized light, allowing them to exploit skylight polarization for orientation. We show that homothorax is both necessary and sufficient for inner PRs to adopt the polarization-sensitive DRA fate instead of the color-sensitive default state. Homothorax increases rhabdomere size and uncouples R7-R8 communication to allow both cells to express the same opsin rather than different ones as required for color vision. Homothorax expression is induced by the iroquois complex and the wingless (wg) pathway. However, crucial wg pathway components are not required, suggesting that additional signals are involved.  相似文献   

7.

Background  

Color vision plays a critical role in visual behavior. An animal's capacity for color vision rests on the presence of differentially sensitive cone photoreceptors. Spectral sensitivity is a measure of the visual responsiveness of these cones at different light wavelengths. Four classes of cone pigments have been identified in vertebrates, but in teleost fishes, opsin genes have undergone gene duplication events and thus can produce a larger number of spectrally distinct cone pigments. In this study, we examine the question of large-scale variation in color vision with respect to individual, sex and species that may result from differential expression of cone pigments. Cichlid fishes are an excellent model system for examining variation in spectral sensitivity because they have seven distinct cone opsin genes that are differentially expressed.  相似文献   

8.
The adaptive importance of polymorphic color vision found in many New World and some prosimian primates has been discussed for many years. Polymorphism is probably maintained in part through a heterozygote advantage for trichromatic females, as such individuals are observed to have greater foraging success when selecting ripe fruits against a background of forest leaves. However, recent work also suggests there are some situations in which dichromatic individuals may have an advantage, and that variation in color vision among individuals possessing different alleles may also be significant. Alleles that confer a selective advantage to individuals are expected to occur at a higher frequency in populations than those that do not. Therefore, analyzing the frequencies of color vision alleles in wild populations can add to our understanding of the selective advantages of some color vision phenotypes over others. With this aim, we used molecular techniques to determine the frequencies of color vision alleles in 12 wild tamarin groups representing three species of the genus Saguinus. Our results show that allele frequencies are not equal, possibly reflecting different selective regimes operating on different color vision phenotypes.  相似文献   

9.
Wolfe (1986, Psychol. Rev. 93, 269-282) proposed a model of human binocular vision based on the assumption of two functionally distinct classes of binocular neuron. These neurons may be regarded as logical AND and OR gates. In the present paper we assess the evidence relevant to this assumption. We find that while both types of binocular neuron have been described in the cortex of cat and monkey, there is no indication that they form functionally separate populations. Critical analysis of the psychophysical evidence for AND and OR channels in human vision suggests that much of the data presented in favor of an AND channel is subject to alternative interpretations. We conclude that the available data are not consistent with the existence of separate channels as proposed by Wolfe.  相似文献   

10.
Several genera of platyrrhine monkeys show significant polymorphism of color vision. By contrast, catarrhine monkeys have usually been assumed to have uniform trichromatic color vision. However, the evidential basis for this assumption is quite limited. To study this issue further, spectral sensitivity functions were obtained from vervet monkeys (Cercopithecus aethiops sabaeus) using the technique of electroretinographic flicker photometry. Results from a chromatic adaptation experiment indicated that each of the twelve subjects had two classes of cone pigment in the 540/640 nm portion of the spectrum. That result strongly suggests that this species has routine trichromatic color vision. Comparison of the spectral sensitivity functions obtained from vervets and from similarly-tested humans further indicates that the cone complements of the two species are very similar. Results from this investigation add further support to the idea that there are fundamental differences in the genetic mechanisms underlying color vision in platyrrhine and catarrhine monkeys.  相似文献   

11.
Some fundamental principles of colour vision, deduced from perceptual studies, have been understood for a long time. Physiological studies have confirmed the existence of three classes of cone photoreceptors, and of colour-opponent neurons that compare the signals from cones, but modern work has drawn attention to unexpected complexities of early organization: the proportions of cones of different types vary widely among individuals, without great effect on colour vision; the arrangement of different types of cones in the mosaic seems to be random, making it hard to optimize the connections to colour-opponent mechanisms; and new forms of colour-opponent mechanisms have recently been discovered. At a higher level, in the primary visual cortex, recent studies have revealed a simpler organization than had earlier been supposed, and in some respects have made it easier to reconcile physiological and perceptual findings.  相似文献   

12.
To gain insights into the evolution and ecology of visually acute animals such as birds, biologists often need to understand how these animals perceive colors. This poses a problem, since the human eye is of a different design than that of most other animals. The standard solution is to examine the spectral sensitivity properties of animal retinas through microspectophotometry-a procedure that is rather complicated and therefore only has allowed examinations of a limited number of species to date. We have developed a faster and simpler molecular method, which can be used to estimate the color sensitivities of a bird by sequencing a part of the gene coding for the ultraviolet or violet absorbing opsin in the avian retina. With our method, there is no need to sacrifice the animal, and it thereby facilitates large screenings, including rare and endangered species beyond the reach of microspectrophotometry. Color vision in birds may be categorized into two classes: one with a short-wavelength sensitivity biased toward violet (VS) and the other biased toward ultraviolet (UVS). Using our method on 45 species from 35 families, we demonstrate that the distribution of avian color vision is more complex than has previously been shown. Our data support VS as the ancestral state in birds and show that UVS has evolved independently at least four times. We found species with the UVS type of color vision in the orders Psittaciformes and Passeriformes, in agreement with previous findings. However, species within the families Corvidae and Tyrannidae did not share this character with other passeriforms. We also found UVS type species within the Laridae and Struthionidae families. Raptors (Accipitridae and Falconidae) are of the violet type, giving them a vision system different from their passeriform prey. Intriguing effects on the evolution of color signals can be expected from interactions between predators and prey. Such interactions may explain the presence of UVS in Laridae and Passeriformes.  相似文献   

13.
The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision.  相似文献   

14.
The distribution of N-acetyl-lactosamine (NALA), a cell-surface carbohydrate epitope of the lactoseries, has been studied in the retina of representative species of all vertebrate classes by light microscope immunohistochemistry. In only some species of different classes (fish, amphibia and mammals) was NALA expression detected, and in these animals the distribution showed profound interspecies variability. In fishes and amphibia in which NALA was present, patterns ranged from single immunopositive cells to homogeneous labelling of cell layers. In mammals, NALA was found only in retinas that are cone dominated (tree squirrel and primates). In the tree squirrel, there was a dense cellular staining of the photoreceptor cell layer; whereas in primates, the carbohydrate epitope occur red only on some photoreceptor cells. From these receptor cells, positi ve axons could be traced to the inner plexiform layer. In spite of the profound interspecies differences, NALA is not randomly expressed, as its exclusive expression in mammals with cone- dominated vision indicates. The suggestion of a functional relevance for NALA glycosylation of retinal cells is supported by the labelling pattern for HNK-1 in these species, which was different from the pattern found in rod-dominated mammalian retinas. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Colour vision in diurnal birds falls into two discrete classes, signified by the spectral sensitivity of the violet- (VS) or ultraviolet-sensitive (UVS) short wavelength-sensitive type 1 (SWS1) single cone. Shifts between sensitivity classes are rare; three or four are believed to have happened in the course of avian evolution, one forming UVS higher passerines. Such shifts probably affect the expression of shortwave-dominated plumage signals. We have used genomic DNA sequencing to determine VS or UVS affinity in fairy-wrens and allies, Maluridae, a large passerine family basal to the known UVS taxa. We have also spectrophotometrically analysed male plumage coloration as perceived by the VS and UVS vision systems. Contrary to any other investigated avian genus, Malurus (fairy-wrens) contains species with amino acid residues typical of either VS or UVS cone opsins. Three bowerbird species (Ptilonorhynchidae) sequenced for outgroup comparison carry VS opsin genes. Phylogenetic reconstructions render one UVS gain followed by one or more losses as the most plausible evolutionary scenario. The evolution of avian ultraviolet sensitivity is hence more complex, as a single shift no longer explains its distribution in Passeriformes. Character correlation analysis proposes that UVS vision is associated with shortwave-reflecting plumage, which is widespread in Maluridae.  相似文献   

16.
Surridge AK  Mundy NI 《Molecular ecology》2002,11(10):2157-2169
Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous.  相似文献   

17.
18.
19.
The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural image input. The algorithm''s ability to classify cones is in broad agreement with experimental evidence about functional color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy, anomalous trichromacy, and possible tetrachromacy.  相似文献   

20.
The UV visual world of fishes: a review   总被引:4,自引:0,他引:4  
Ultraviolet-A radiation (320–400 nm) is scattered rapidly in water. Despite this fact, UV is present in biologically useful amounts to at least 100 m deep in clear aquatic environments. Discovery of UV visual pigments with peak absorption at around 360 nm in teleost cone photoreceptors indicates that many teleost fishes may be adapted for vision in the UV range. Considering the characteristic absorption curve for visual pigments, about 18% of the downwelling light that illuminates objects at 30-m depth would be available to UV-sensitive cones. Strong scattering of UV radiation should produce unique imaging conditions as a very bright UV background in the horizontal view and a marked veiling effect that, with distance, obscures an image. Many teleosts have three, or even four, classes of cone cells mediating colour vision in their retina and one can be sensitive to UV. These UV-sensitive cones contain a visual pigment based on a unique opsin which is highly conserved between fish species. Several powerful methods exist for demonstration of UV vision, but all are rather demanding in terms of technique and equipment. Demonstration that the eye lacks UV-blocking compounds that are present in many fish eyes is a simpler method that can indicate the possibility of UV vision. The only experimental evidence for the use of UV vision by fishes is connected to planktivory: detection of UV-opaque objects at close range against a bright UV background is enhanced by the physical properties of UV light. Once present, perhaps for the function of detecting food, UV vision may well be co-opted through natural selection for other functions. Recent discovery that UV vision is critically important for mate choice in some birds and lizards is a strong object lesson for fish ecologists and behaviourists. Other possible functions amount to far more than merely adding a fourth dimension to the visible spectrum. Since UV is scattered so effectively in water, it may be useful for social signalling at short range and reduce the possibility of detection by other, illegitimate, receivers. Since humans are blind to UV light, we may be significantly in error, in many cases, in our attempts to understand and evaluate visual aspects of fish behaviour. A survey of the reflectance properties of skin pigments in fishes reveals a rich array of pigments with reflectance peaks in the UV. For example, the same yellow to our eyes may comprise two perceptually different colours to fish, yellow and UV-yellow. It is clearly necessary for us to anticipate that many fishes may have some form of UV vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号