首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

2.
Neylon C  Brown SE  Kralicek AV  Miles CS  Love CA  Dixon NE 《Biochemistry》2000,39(39):11989-11999
The Escherichia coli replication terminator protein (Tus) binds tightly and specifically to termination sites such as TerB in order to halt DNA replication. To better understand the process of Tus-TerB interaction, an assay based on surface plasmon resonance was developed to allow the determination of the equilibrium dissociation constant of the complex (K(D)) and association and dissocation rate constants for the interaction between Tus and various DNA sequences, including TerB, single-stranded DNA, and two nonspecific sequences that had no relationship to TerB. The effects of factors such as the KCl concentration, the orientation and length of the DNA, and the presence of a single-stranded tail on the binding were also examined. The K(D) measured for the binding of wild type and His(6)-Tus to TerB was 0.5 nM in 250 mM KCl. Four variants of Tus containing single-residue mutations were assayed for binding to TerB and the nonspecific sequences. Three of these substitutions (K89A, R198A, and Q250A) increased K(D) by 200-300-fold, whereas the A173T substitution increased K(D) by 4000-fold. Only the R198A substitution had a significant effect on binding to the nonspecific sequences. The kinetic and thermodynamic data suggest a model for Tus binding to TerB which involves an ordered series of events that include structural changes in the protein.  相似文献   

3.
Arrest of DNA replication in the terminus region of the Escherichia coli chromosome is mediated by protein-DNA complexes composed of the Tus protein and 23 base pair sequences generically called Ter sites. We have characterized the in vitro binding of purified Tus protein to a 37-base pair oligodeoxyribonucleotide containing the TerB sequence. The measured equilibrium binding constant (KD) for the chromosomal TerB site in KG buffer (50 mM Tris-Cl, 150 mM potassium glutamate, 25 degrees C, pH 7.5, 0.1 mM dithiothreitol, 0.1 mM EDTA, and 100 micrograms/ml bovine serum albumin) was 3.4 x 10(-13) M. Kinetic measurements in the same buffer revealed that the Tus-TerB complex was very stable, with a half-life of 550 min, a dissociation rate constant of 2.1 x 10(-5) s-1, and an association rate constant of 1.4 x 10(8) M-1 s-1. Similar measurements of Tus protein binding to the TerR2 site of the plasmid R6K showed an affinity 30-fold lower than the Tus-TerB interaction. This difference was due primarily to a more rapid dissociation of the Tus-TerR2 complex. Using standard chemical modification techniques, we also examined the DNA-protein contacts of the Tus-TerB interaction. Extensive contacts between the Tus protein and the TerB sequence were observed in the highly conserved 11 base-pair "core" sequence common to all identified Ter sites. In addition, protein-DNA contact sites were observed in the region of the Ter site where DNA replication is arrested. Projection of the footprinting data onto B-form DNA indicated that the majority of the alkylation interference and hydroxyl radical-protected sites were arranged on one face of the DNA helix. We also observed dimethyl sulfate protection of 2 guanine residues on the opposite side of the helix, suggesting that part of the Tus protein extends around the double helix. The distribution of contacts along the TerB sequence was consistent with the functional polarity of the Tus-Ter complex and suggested possible mechanisms for the impediment of protein translocation along DNA.  相似文献   

4.
H Bierne  S D Ehrlich    B Michel 《The EMBO journal》1991,10(9):2699-2705
Hybrids composed of phage M13, plasmid pBR322 and the termination signal of Escherichia coli chromosome replication terB were used to show that arrest of DNA synthesis creates a very efficient deletion hot spot. Up to 80% of deletions occurring in these hybrids had one deletion end-point at terB provided that (i) terB was oriented to arrest M13 and pBR322 leading strand synthesis; and (ii) the host cells contained the Tus protein necessary for arresting DNA synthesis at terB. The position of terB and the flanking sequences had little effect on deletion hot spot activity. About 90% of the deletions at terB ended 5-6 nucleotides in front of the major replication arrest site. We propose two models to account for deletion formation and speculate that many genome rearrangements may be due to the pausing of DNA replication.  相似文献   

5.
6.
7.
H S Zhou  C Byrd    R J Meyer 《Nucleic acids research》1991,19(19):5379-5383
The E.coli Tus protein is an anti-helicase involved in the termination of chromosome replication. The binding site for this protein, ter, was cloned into derivatives of the broad host-range plasmid R1162. The ter site caused the orientation-specific termination of plasmid replication fork movement in cell extracts containing Tus. Plasmids were constructed so that two sites for initiation of R1162 replication flanked the iteron-containing domain of the origin. In these plasmids, the site next to the AT-rich region within the iteron-containing domain was more active. In addition, when ter was placed between the more active site and the iterons, initiation of replication from this site was specifically inhibited. The data support a model for entry of the essential, plasmid-encoded helicase at one side of the direct repeats, and for its movement primarily in one direction away from these repeats to activate the initiation sites for DNA replication.  相似文献   

8.
The Tus protein of Escherichia coli is capable of arresting DNA replication in an orientation-dependent manner when bound to specific sequences in the bacterial chromosome called Ter sites. Arrest of DNA replication has been postulated to occur either by a barrier mechanism, where Tus acts as a physical block to replication fork progression, or through protein-protein interactions between Tus and some component of the replication fork. A previous mutational analysis of Tus suggested that the amino acids in the L1 loop might play a role in replication arrest. Site-directed mutagenesis of amino acids in the L1 loop and other amino acid residues on the "non-permissive" face of Tus was performed to identify residues that affected Tus function. One mutant, E47Q, gave results that are inconsistent with the barrier model, showing a greater affinity for the Ter site (with a t 1/2 of 348 min versus 150 min for wild-type Tus) but a reduced ability to arrest DNA replication in vivo. In addition to the site-directed mutagenesis studies, the tus genes of Salmonella, Klebsiella, and Yersinia were sequenced and the proteins expressed in E. coli to assess their ability to arrest DNA replication. The results presented here support a role for protein-protein interactions in Tus function, and suggest that residues E47 and E49 participate in replication fork arrest.  相似文献   

9.
10.
The terminus region of the E. coli chromosome contains two loci, T1 and T2, that inhibit the progress of replication forks and require the trans-acting factor tus. We have identified a 23 bp terminator signal at T1 and T2 that is within 100 bp of the sites of replication arrest. When an oligodeoxyribonucleotide containing the terminator signal was inserted into a plasmid, replication was halted only in a tus+ strain and when the terminator signal was oriented properly. We also found this terminator sequence in the terminus region of the plasmid R6K and in the origin region of RepFIIA class plasmids. In addition, we found striking similarities between the E. coli terminator signal and the terminator sequence of B. subtilis.  相似文献   

11.
Mulcair MD  Schaeffer PM  Oakley AJ  Cross HF  Neylon C  Hill TM  Dixon NE 《Cell》2006,125(7):1309-1319
During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression. In contrast, strand separation extending to and including the strictly conserved G-C(6) base pair at the nonpermissive end led to formation of a stable locked complex. Lock formation specifically requires the cytosine residue, C(6). The crystal structure of the locked complex showed that C(6) moves 14 A from its normal position to bind in a cytosine-specific pocket on the surface of Tus.  相似文献   

12.
The Escherichia coli replication fork arrest complex Tus/Ter mediates site-specific replication fork arrest and homologous recombination (HR) on a mammalian chromosome, inducing both conservative “short tract” gene conversion (STGC) and error-prone “long tract” gene conversion (LTGC) products. We showed previously that bidirectional fork arrest is required for the generation of STGC products at Tus/Ter-stalled replication forks and that the HR mediators BRCA1, BRCA2 and Rad51 mediate STGC but suppress LTGC at Tus/Ter-arrested forks. Here, we report the impact of Ter array length on Tus/Ter-induced HR, comparing HR reporters containing arrays of 6, 9, 15 or 21 Ter sites—each targeted to the ROSA26 locus of mouse embryonic stem (ES) cells. Increasing Ter copy number within the array beyond 6 did not affect the magnitude of Tus/Ter-induced HR but biased HR in favor of LTGC. A “lock”-defective Tus mutant, F140A, known to exhibit higher affinity than wild type (wt)Tus for duplex Ter, reproduced these effects. In contrast, increasing Ter copy number within the array reduced HR induced by the I-SceI homing endonuclease, but produced no consistent bias toward LTGC. Thus, the mechanisms governing HR at Tus/Ter-arrested replication forks are distinct from those governing HR at an enzyme-induced chromosomal double strand break (DSB). We propose that increased spatial separation of the 2 arrested forks encountering an extended Tus/Ter barrier impairs the coordination of DNA ends generated by the processing of the stalled forks, thereby favoring aberrant LTGC over conservative STGC.  相似文献   

13.
The chromosomal replication origins (oriC) of gram positive, acid-fast actinomycetes have been investigated in streptomycetes and mycobacteria. A 1339 bp DNA fragment of the putative oriC region from the rifamycin SV producer Amycolatopsis mediterranei U32 was cloned by PCR amplification employing primers designed based on the conserved flanking genes of dnaA and dnaN. The 884 bp sequence of the intergenic region between dnaA and dnaN genes consists of 19 DnaA-boxes and two 13-mer AT-rich sequences, which is similar to the oriC structure of Streptomyces lividans. A mini-chromosome constructed by cloning the putative U32 oriC DNA fragment into an Escherichia coli plasmid was able to replicate autonomously, but was unstable, in A. mediterranei U32 with an estimated copy number of two per cell. Although efficient replication of the mini-chromosome in U32 requires the complete set of DnaA-boxes and AT-rich regions, only one of the AT-rich sequences together with part of the DnaA-boxes is sufficient, suggesting the presence of combinatorial alternatives for a functional oriC region of A. mediterranei U32. Phylogenetic analysis based on definite oriC sequences among eubacteria reflects well the relationship between these species.  相似文献   

14.
The first stage in termination of chromosome replication in Bacillus subtilis involves arrest of the clockwise fork at the inverted repeat region (IRR), comprising the opposed IRI and IRII sequences, adjacent to the upstream region of the rtp gene, which encodes the replication terminator protein RTP. RTP binds to IRI and IRII. The ability of the IRR and its components to function as terminators, in conjunction with RTP, and their polarity of action have now been tested by the use of plasmids replicating in B. subtilis as unidirectional theta structures and into which potential terminator sequences were inserted in alternate orientations relative to fork movement. When the complete IRR was inserted into such plasmids and the new plasmids transferred into a B. subtilis strain overproducing RTP, it was able to block movement of a replication fork approaching from either direction. IRI and IRII were shown to function as polar terminators, each blocking movement of a fork when it approached from one particular direction but not the other. Furthermore, the polarity of action was in accordance with the IRR being able to operate as a replication fork trap. Thus, a fork approaching the IRR would pass through the first terminator encountered (IRI or IRII) and be halted by the second. The previously observed nonfunctioning of a particular orientation of chromosomal IRR as a fork arrest site probably reflects a limiting level of RTP in the cell. Interestingly, a 21 base-pair core sequence spanning a single RTP binding site within IRI (the 47 base-pair IRI contains 2 binding sites) was unable to arrest a fork approaching from either direction in the plasmid system. This suggests that both binding sites within an IR must be filled in order to function as an arrest site. It is possible that co-operative interaction between adjacent dimers within IRI or IRII provides the necessary conformation for causing fork arrest.  相似文献   

15.
A DNA replication terminator sequence blocks an approaching replication fork when the moving replisome approaches from just one direction. The mechanism underlying polar arrest has been debated for years, but recent work has helped to reveal how a replication fork is blocked in Escherichia coli . Early work suggested that asymmetric interaction between terminator protein and terminator DNA contributes to polar fork arrest. A later study demonstrated that if the terminator DNA is partially unwound, the resulting melted DNA could bind tightly to the terminator protein, suggesting a mechanism for polar arrest that involves a locked complex. However, recent evidence suggests that the terminator protein–DNA contacts are not sufficient for polar arrest in vivo . Furthermore, polar arrest of a replication fork still occurs in the absence of a locked complex between the terminator protein and DNA. In E. coli and Bacillus subtilis , the bound terminator protein makes protein–protein contacts with the replication fork helicase, and these contacts are critical in blocking progression of the advancing fork. Thus, we propose that interactions between the replication fork helicase and terminator protein are the primary mechanism for polar fork arrest in bacteria, and that this primary mechanism is modulated by asymmetric contacts between the terminator protein and its cognate DNA sequence. In yeast, terminator sequences are present in rDNA non-transcribed spacers and a region immediately preceding the mating type switch locus Mat1, and the mechanism of polar arrest at these regions is beginning to be elucidated.  相似文献   

16.
In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.  相似文献   

17.
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.  相似文献   

18.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

19.
Autonomous replicating sequences are DNA elements that trigger DNA replication and are widely used in the development of episomal transformation vectors for fungi. In this paper, a genomic library from the mycorrhizal fungus Gigaspora rosea was constructed in the integrative plasmid YIp5 and screened in the budding yeast Saccharomyces cerevisiae for sequences that act as ARS and trigger plasmid replication. Two genetic elements (GrARS2, GrARS6) promoted high-rates of yeast transformation. Sequence analysis of these elements shows them to be AT-rich (72-80%) and to contain multiple near-matches to the yeast autonomous consensus sequences ACS and EACS. GrARS2 contained a putative miniature inverted-repeat transposable element (MITE) delimited by 28-bp terminal inverted repeats (TIRs). Disruption of this element and removal of one TIR increased plasmid stability several fold. The potential for palindromes to affect DNA replication is discussed.  相似文献   

20.
In Escherichia coli, eight kinds of chromosome-derived DNA fragments (named Hot DNA) were found to exhibit homologous recombinational hotspot activity, with the following properties. (i) The Hot activities of all Hot DNAs were enhanced extensively under RNase H-defective (rnh) conditions. (ii) Seven Hot DNAs were clustered at the DNA replication terminus region on the E. coli chromosome and had Chi activities (H. Nishitani, M. Hidaka, and T. Horiuchi, Mol. Gen. Genet. 240:307-314, 1993). Hot activities of HotA, -B, and -C, the locations of which were close to three DNA replication terminus sites, the TerB, -A, and -C sites, respectively, disappeared when terminus-binding (Tau or Tus) protein was defective, thereby suggesting that their Hot activities are termination event dependent. Other Hot groups showed termination-independent Hot activities. In addition, at least HotA activity proved to be dependent on a Chi sequence, because mutational destruction of the Chi sequence on the HotA DNA fragment resulted in disappearance of the HotA activity. The HotA activity which had disappeared was reactivated by insertion of a new, properly oriented Chi sequence at the position between the HotA DNA and the TerB site. On the basis of these observations and positional and orientational relationships between the Chi and the Ter sequences, we propose a model in which the DNA replication fork blocked at the Ter site provides an entrance for the RecBCD enzyme into duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号