共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of soybean lipoxygenase-1 with linoleic acid has been extensively studied and displays very large kinetic isotope effects. In this work, substrate and solvent kinetic isotope effects as well as the viscosity dependence of the oxidation of arachidonic acid were investigated. The hydrogen atom abstraction step was rate-determining at all temperatures, but was partially masked by a viscosity-dependent step at ambient temperatures. The observed KIEs on k(cat) were large ( approximately 100 at 25 degrees C). 相似文献
2.
Chyle and chylomicrons, obtained after feeding thoracic duct cannulated rats [3H]arachidonic (20:4) and [14C]linoleic acid (18:2) in cream, were injected i.v. into recipient animals. 7.5-15 min after injection, the 14C/3H ratio of the triacylglycerols remaining in plasma was about half of that in the injected chylomicrons, indicating that the chylomicron remnants formed retained relatively more [3H]20:4 than [14C]18:2. The 14C/3H ratio of plasma diacylglycerols was about 6-fold lower than that of plasma free fatty acids. The proportion of [3H]20:4 found in plasma cholesteryl esters was several-fold higher than that of [14C]18:2. Inhibition of hepatic lipase by a specific antiserum did not significantly influence the clearance of triacylglycerols, but increased the amount of 3H in plasma diacylglycerols. It also prevented the rapid clearance of phosphatidylethanolamine from plasma. The liver uptake of [3H]20:4 exceeded that of [14C]18:2. Antiserum against hepatic lipase diminished the difference. In contrast, the 14C/3H ratio of adipose tissue was higher than that of the injected chyle lipoproteins. 相似文献
3.
Linoleic acid oxidation by 5-lipoxygenase from Solanum tuberosum has been studied as affected by sodium dodecylsulfate (Ds-Na). The reaction system consisted of 5-lipoxygenase and mixed micelles of linoleic acid and Lubrol PX. It contained varying amounts of the enzyme effector--Ds-Na. The enzyme showed a pronounced cooperativity, and the reaction was governed by the Hill equation with h = 3.7. On the other side, increasing amounts of Ds-Na added to the system caused a tremendous increase of enzyme activity and simultaneous decline of h, with was proportional to Ds-Na concentration. Ds-Na had dual effect on 5-lipoxygenase--there was an optimal concentration of the compound (0.34 mM Lubrol PX; 0.2 mM LA; 0.13 mM Ds-Na; pH = 6.3) causing the 4-fold highest activation and h = 1.6. The further increase of Ds-Na led to the enzyme inhibition. If Ds-Na was 0.5 mM, h became 1. At this point, each molecule of 5-lipoxygenase bound 3 molecules of Ds-Na and 1 molecule of linoleic acid, thus the total number of occupied binding sites was 4. A kinetic scheme of 5-lipoxygenase reaction has been proposed. It was found that the enzyme's kinetic behaviour could be explaine if assumed an existence of a special noncatalytic binding centre capable of binding several (up to 3) molecules of either substrate, or effector. Such a centre can serve as an anchoring site facilitating the enzyme binding to the surface of lipid aggregates containing insolubilized substrate molecules. Replacing linoleic acid in the binding site, Ds-Na activates the enzyme, possibly due to the much more effective translocation of 5-lipoxygenase to the surface of lipid aggregates. This mechanism can be an universal alternative to the FLAP-type regulation of 5-lipoxygenase activities. 相似文献
4.
Although LDL esterified polyunsaturated fatty acids (PUFA) contribute largely to the pool of oxidizable lipids in plasma, they coexist with a non-negligible content of free PUFA. In some pathological conditions, the free PUFA/albumin ratio becomes abnormally elevated. Modeling was performed in a system constituted of linoleic acid bound to human serum albumin (HSA) in which oxidation was initiated by hydrophilic AAPH. Inhibition of lipid peroxidation was evaluated for various flavonoids. The accumulations of hydroperoxyoctadecadienoic acids (HPODE), hydroxyoctadecadienoic acids (HODE) and ketooctadecadienoic acids (KODE) were similarly inhibited: isoquercitrin>quercetin>catechin=isorhamnetin>kaempferol>quercetin-4'-beta-D-glucoside=quercetin-3,4'-di-beta-D-glucoside. Surprisingly, quercetin and isorhamnetin afforded a protection to linoleic acid long after their consumption. Elucidation by mass spectrometry and NMR of the quercetin oxidation products and assessment of their antioxidant capacity pointed out that 3,4-dihydroxybenzoic acid and 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one are major contributors to the apparent quercetin antioxidant capacity. 相似文献
5.
《The Journal of nutritional biochemistry》2014,25(6):647-654
Uncontrolled inflammation is an underlying etiology for multiple diseases and macrophages orchestrate inflammation largely through the production of oxidized fatty acids known as oxylipids. Previous studies showed that selenium (Se) status altered the expression of oxylipids and magnitude of inflammatory responses. Although selenoproteins are thought to mediate many of the biological effects of Se, the direct effect of selenoproteins on the production of oxylipids is unknown. Therefore, the role of decreased selenoprotein activity in modulating the production of biologically active oxylipids from macrophages was investigated. Thioglycollate-elicited peritoneal macrophages were collected from wild-type and myeloid-cell-specific selenoprotein knockout mice to analyze oxylipid production by liquid chromatography/mass spectrometry as well as oxylipid biosynthetic enzyme and inflammatory marker gene expression by quantitative real-time polymerase chain reaction. Decreased selenoprotein activity resulted in the accumulation of reactive oxygen species, enhanced cyclooxygenase and lipoxygenase expression and decreased oxylipids with known anti-inflammatory properties such as arachidonic acid-derived lipoxin A4 (LXA4) and linoleic acid-derived 9-oxo-octadecadienoic acid (9-oxoODE). Treating RAW 264.7 macrophages with LXA4 or 9-oxoODE diminished oxidant-induced macrophage inflammatory response as indicated by decreased production of TNFα. The results show for the first time that selenoproteins are important for the balanced biosynthesis of pro- and anti-inflammatory oxylipids during inflammation. A better understanding of the Se-dependent control mechanisms governing oxylipid biosynthesis may uncover nutritional intervention strategies to counteract the harmful effects of uncontrolled inflammation due to oxylipids. 相似文献
6.
Two different lipoxygenases have been identified in human and rat epidermis. One lipoxygenase has a (n-9)-specificity, converts arachidonic acid into 12-hydroxyeicosatetraenoic acid (12-HETE), and has been described by several investigators. Linoleic acid is not a substrate for this enzyme. The other lipoxygenase, with (n-6)-specificity, converts arachidonic acid into 15-HETE and linoleic acid into 13-hydroxyoctadecadienoic acid (13-HOD). Especially the latter lipoxygenase is thought to be involved in the regulation of the differentiation of the skin cells into a proper water-barrier layer. Linoleate is supposed to be the physiological substrate; this fatty acid is especially present in characteristic sphingolipids with unique structures. 相似文献
7.
8.
N. Salem Jr. R. Pawlosky B. Wegher J. Hibbeln 《Prostaglandins, leukotrienes, and essential fatty acids》1999,60(5-6):407-410
Human adults are shown to be capable of conversion of linoleic acid (LA, 18:2 n-6) to arachidonic acid (AA, 20:4 n-6) in vivo. It is confirmed that they can also convert alpha-linolenic acid (LNA, 18:3 n-3) to eicosapentaenoic acid (EPA, 20:5 n-3) and to docosahexaenoic acid (DHA, 22:6 n-3) in vivo. The time course and the maximal response for these processes during the first week after a single dose of the 18-carbon precursor is described. A stable-isotope method in which the protons of the C17 and C18 carbons are substituted with deuterium atoms is used in order to provide for a safe method for the study of human metabolism. High sensitivity and selectivity of detection is assured with negative ion, gas chromatography/mass spectrometry analysis. It is clear that human adults on an ad lib diet carry out EFA metabolism in vivo. 相似文献
9.
Turgeon D Chouinard S Belanger P Picard S Labbe JF Borgeat P Belanger A 《Journal of lipid research》2003,44(6):1182-1191
Arachidonic acids (AA) and linoleic acids (LAs) are metabolized, in several tissues, to hydroxylated metabolites that are important mediators of many physiological and pathophysiological processes. The conjugation of leukotriene B4 (LTB4), 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE, 15-HETE, and 13-hydroxyoctadecadienoic acid (HODE) by the human UDP-glucuronosyltransferase (UGT) enzymes was investigated. All substrates tested were efficiently conjugated by human liver microsomes to polar derivatives containing the glucuronyl moiety as assessed by mass spectrometry. The screening analyses with stably expressed UGT enzymes in HK293 showed that glucuronidation of LTB4 was observed with UGT1A1, UGT1A3, UGT1A8, and UGT2B7, whereas UGT1A1, UGT1A3, UGT1A4, and UGT1A9 also conjugated most of the HETEs and 13-HODE. LA and AA metabolites also appear to be good substrates for the UGT2B subfamily members, especially for UGT2B4 and UGT2B7 that conjugate all HETE and 13-HODE. Interestingly, UGT2B10 and UGT2B11, which are considered as orphan enzymes since no conjugation activity has so far been demonstrated with these enzymes, conjugated 12-HETE, 15-HETE, and 13-HODE. In summary, our data showed that several members of UGT1A and UGT2B families are capable of converting LA and AA metabolites into glucuronide derivatives, which is considered an irreversible step to inactivation and elimination of endogenous substances from the body. 相似文献
10.
Joffre F Martin J Genty M Demaison L Loreau O Noël J Sébédio J 《The Journal of nutritional biochemistry》2001,12(10):554-558
Cyclic fatty acid monomers (CFAM) occur from linoleic (CFAM-18:2) or linolenic (CFAM-18:3) acids present in some edible oils as a result of domestic frying or industrial refining. They present adverse effects in pups and weaning rats. In the present work, we studied the importance of hepatic oxidation in the metabolism of CFAM. For this purpose, kinetic parameters of Carnitine Palmitoyl Transferase I (key enzyme of the channeling of the fatty acids into the mitochondrial beta-oxidation pathway) and Acyl CoA Oxidase (key enzyme of the peroxisomal oxidation pathway) towards CFAM-18:2 and CFAM-18:3 were calculated on hepatic sub-cellular fractions of rats. For mitochondrial oxidation of CFAM, we observed a lower oxygen consumption and a lower activity of Carnitine Palmitoyl Transferase compared to 18:2w6 and 16:0. For peroxisomal oxidation, CFAM-18:2 showed the same kinetic parameters (Vm and K(0.5)) as 18:2w6 and 16:0, used for oxidative controls, whereas CFAM-18:3 presented a lower Vm (-50%). This difference should induce a lower catabolism of CFAM-18:3 in liver. This could contribute to their accumulation and probably to their toxic effect. 相似文献
11.
12.
Adam O Tesche A Wolfram G 《Prostaglandins, leukotrienes, and essential fatty acids》2008,79(3-5):177-181
Long-chain conversion of linoleic acid (LA) and eicosanoid formation was followed in 6 healthy females who were given for 6 weeks liquid formula diets which contained no arachidonic acid but, for 2 weeks each, a LA supply of 0 energy% (en%), 4 en%, and 20 en%, respectively. RESULTS: higher LA intake resulted in higher LA percentages in investigated lipids, but not in higher amounts of LA present in plasma cholesterol esters or phosphatidylcholine of LDL and HDL comparing liquid formula diet (LFD) 4 and LFD 20. A higher intake of LA resulted in a decrease of arachidonic acid, which was most prominent in HDL phosphatidycholine. Eicosanoids derived from cyclo-oxygenase activity were unchanged by LA intake, while an increase of cytochrome P450-dependent tetranorprostanedioic acid formation was observed with LFD 20. CONCLUSION: LA intake of 4 en% appears to be a recommendable intake, without signs of stimulated eicosanoid biosynthesis or oxidation. 相似文献
13.
Conversion of linoleic acid into arachidonic acid by cultured murine and human keratinocytes 总被引:1,自引:0,他引:1
The origin of arachidonic acid (AA) found in the epidermis is not known. Two possibilities exist: either de novo synthesis within the epidermal keratinocyte, or transport of AA formed at distant tissue sites. The current study examined the ability of cultured murine and human keratinocytes to metabolize exogenously added linoleic acid (LA). Conversion of radiolabeled substrate (14C-LA) into 18:3(n-6), 20:2(n-6), 20:3(n-6), and 20:4(n-6) (AA) was noted. The conversion of non-radiolabeled 18:3(n-6) or 20:2(n-6) was also examined and the pattern of metabolites synthesized suggests that the preferred metabolic pathway for conversion of linoleic acid into arachidonic acid is via the classically described pathway in which a delta 6 desaturase constitutes the initial reaction. Although cultured skin fibroblasts are known to convert linoleic acid into arachidonic acid, the current study demonstrates that cultured epidermal keratinocytes can also avidly metabolize exogenous linoleic acid. The ability of cultured keratinocytes, and not of whole epidermis in vivo, to convert linoleic acid into arachidonic acid suggests that specific enzymatic activities may be induced by the tissue culture system itself. Hence, findings of metabolic capabilities in cultured cells may not necessarily be extrapolated to the in vivo situation. 相似文献
14.
The lack of any information as to the origin of epidermal arachidonic acid, an important precursor of eicosanoids in the epidermis, prompted us to determine in vitro whether or not microsomal preparations from rat and guinea pig epidermis possess the delta 6 and delta 5 desaturase activities. The incubations were performed in parallel with microsomal preparations from liver of these animals where activities for these enzymes have previously been reported. The conversions of radioactive fatty acids were determined after methylation and separation of the 14C-fatty acid methyl esters by argentation thin layer chromatography. Data from these studies demonstrated that delta 5 desaturase activity is markedly lower in guinea pig liver than in rat liver. Interestingly, preparations from rat and guinea pig epidermis at all concentrations tested lacked the capacity to transform either linoleic acid into gammalinolenic acid or dihomogammalinolenic acid into arachidonic acid. This observation implies that arachidonic acid that is present in the epidermal phospholipids is biosynthesized elsewhere endogenously and transported to the epidermis for esterification into the phospholipids. The site of this biosynthesis is presumably the liver and the mode of transport to the epidermis remains to be determined. These studies indicate arachidonic acid per se as an essential fatty acid for the epidermis. 相似文献
15.
van Himbergen TM van Tits LJ Hectors MP de Graaf J Roest M Stalenhoef AF 《Biochemical and biophysical research communications》2005,333(3):787-793
Serum paraoxonase-1 (PON1) is a high-density lipoprotein-associated enzyme that can inhibit low-density lipoprotein (LDL) oxidation in vitro. The role of PON1 in vivo still remains to be clarified. We investigated the effect of PON1 genotype (-107C > T and 192Q > R), concentration, paraoxonase activity, and arylesterase activity on the early phase of lipid peroxidation in plasma samples of 110 patients with heterozygous familial hypercholesterolemia. The degree of lipid oxidation was assessed by quantitation of oxidized-linoleic acid (the most abundant fatty acid present in LDL) using high performance liquid chromatography. We found a significant inverse correlation between paraoxonase activity and the oxidized-linoleic acid concentration (r = -0.22, P = 0.03), independent of baseline linoleic acid levels. These findings support an anti-oxidative role for PON1 in patients with FH, and thus may give insight into the functioning of PON1 in vivo. 相似文献
16.
Fatty acid-derived inflammatory mediators are considered to play an important role in airway hyperresponsiveness of asthmatic patients. The pulmonary macrophage may be an important source for these mediators in airway tissue. We investigated the metabolism of arachidonic acid and linoleic acid by human bronchoalveolar lavage cells, mainly comprising pulmonary macrophages. Arachidonic was mainly metabolized by 5-lipoxygenase, giving rise to the formation of leukotriene B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). Linoleic acid was converted to 5 major metabolites, including the 9-hydroxy and 13-hydroxy derivatives, 9- and 13-hydroxy-octadecadienoic acid (9- and 13-HODE). The formation of HODEs could be inhibited by cyclooxygenase inhibitors as well as lipoxygenase inhibitors, indicating that both enzymic species play a role in the generation of HODEs. 相似文献
17.
Lukas Kubala Kara R. Schmelzer Anna Klinke Hana Kolarova Stephan Baldus Bruce D. Hammock Jason P. Eiserich 《Free radical biology & medicine》2010,48(10):1311-1320
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography–mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases. 相似文献
18.
R J Soberman T W Harper D Betteridge R A Lewis K F Austen 《The Journal of biological chemistry》1985,260(7):4508-4515
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid. 相似文献
19.
A method for determination of the lipoxygenase products of linoleic acid (9- and 13-hydroxyoctadecadienoic acid; 9-HODE, 13-HODE) and of arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxyeicosatetraenoic acid; 5-, 8-, 9-, 11-, 12-, and 15-HETE) is described. The method combines solid-phase extraction, derivatization to the corresponding fully hydrogenated methylester/trimethylsilylether derivatives and capillary gas chromatography coupled with electron impact mass spectrometry. Each regioisomeric HODE and HETE shows a unique pair of mass spectrometric fragment ions originating from fission of the fatty acid carbon chain at the hydroxylated position. The carboxyl-terminal fragment is used for quantification relative to a carboxyl-18O2-labeled analogue added as internal standard and the methyl-terminal fragment is monitored for confirmation. The assay can be extended for quantification of the complete hydroxylation profile of linoleic and arachidonic acid. Applications of this assay are demonstrated for the quantification of HODEs and HETEs in normal, hyperplastic, and neoplastic mouse epidermis. In mouse epidermis papilloma, the tissue levels of 8- and 12-HETE were found to be increased by one to two orders of magnitude compared to levels in normal epidermis. 相似文献
20.
An important event in the formation of atherosclerotic lesions is the uptake of modified low density lipoprotein (LDL) by macrophages via scavenger receptors. Modification of LDL, which results in its recognition by these receptors, can be initiated by peroxidation of LDL lipids. The first step in this process is the formation of monohydroperoxy derivatives of fatty acids, which are subsequently degraded to the corresponding monohydroxy compounds, or to a variety of secondary oxidation products. In order to understand this process more completely, we have developed a mass spectrometric procedure to measure the amounts of specific hydroperoxy/hydroxy fatty acids formed by oxidation of the major unsaturated fatty acids in human LDL, oleic acid, linoleic acid, and arachidonic acid. Oxidation of human LDL in the presence of a relatively strong stimulus (20 microM CuSO4) resulted in very large increases in the amounts of the major monohydroxy derivatives of linoleic acid (9- and 13-hydroxy derivatives) and arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxy derivatives) in LDL lipids in the early stages of the reaction. After 20 h, the amounts of these products declined due to substrate depletion, but large amounts of monohydroxy derivatives of oleic acid (8-, 10-, and 11-hydroxy derivatives) were detected. Although thiobarbituric acid-reactive substances clearly increased under these conditions, the changes were not nearly so dramatic as those observed for monohydroxy fatty acids. Oxidation of LDL in the presence of endothelial cells, a much milder stimulus, resulted in 2.5- to 3-fold increases in the amounts of monohydroxy derivatives of linoleic and arachidonic acids, as well as thiobarbituric acid-reactive substances, with more modest increases in the amounts of hydroxylated derivatives of oleic acid. There was little positional specificity in the oxidation of the above fatty acids in the presence of either stimulus, suggesting that the formation of these products proceeds primarily by lipid peroxidation, rather than by catalysis by lipoxygenases. However, an important role for lipoxygenases in the initiation of these reactions cannot be excluded. In conclusion, oxidation of LDL in the presence of copper ions or endothelial cells results in the formation of a large number of monohydroxy derivatives of oleic, linoleic, and arachidonic acids. The relative amounts of products formed from each of these fatty acids depends on the strength of the stimulus as well as the incubation time. 相似文献