首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of putrescine and ethephon on peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.14.18.1), catalase (CAT; EC 1.11.1.6) activities and proline content in spinach leaves under saline stress were investigated. In control conditions, putrescine increased PPO and CAT activities and proline content, but decreased POD activity. Ethephon increased these three enzyme activities but did not affect proline content. In saline conditions, putrescine increased POD and CAT activities and proline content, while it decreased PPO activity. Ethephon increased both PPO and CAT activities and proline content, but decreased POD activity. Putrescine and ethephon have opposite effects on the enzyme activities and proline accumulation because they acts as antagonists.  相似文献   

2.
3.
Accumulation of proline in response to environmental stresses seems tobe widespread among plants. To elucidate the role of proline in plantresponses,in vivo and in vitro, we studied theeffect of proline on catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7)and polyphenol oxidase (PPO; EC 1.14.18.1). In vivo, thesethree enzymes were activated by proline, while CAT and POD were activated andPPO was inactivated by NaCl. In vitro, CAT and POD wereactivated and PPO was inactivated by proline. Proline appeared to protect thesethree enzyme activities. The significance of these findings with regard toenvironmental stress-induced proline accumulation in vivois discussed. The ability of proline to activate the enzymes may suggest alimited conformational change. These results are important for characterisationof metabolic responses to environmental stresses and can be used as a stressindicator.  相似文献   

4.
In order to investigate the effects of Glomus species on some physiological characteristics of two chickpea types (Pirouz cultivar of Desi type and ILC-482 of Kabuli type) under non-stress (NS) and drought stress, an experiment was conducted using a factorial arrangement based on completely randomized design with three replications. Drought stress decreased shoot and total dry weight in plants. However inoculation of plants with mycorrhiza improved these traits. Leaf chlorophyll content was decreased, but leaf proline content and guaiacol peroxidases (EC 1.11.1.7) (POD), catalase (EC 1.11.1.6) (CAT), and ascorbate peroxidase (EC 1.11.1.11) (APX) activities were increased as a result of drought stress. Drought stress had no significant effect on soluble protein content and polyphenol oxidase (EC 1.10.3.1) (PPO) enzymatic activity in chickpea plants. In general, drought stress and especially severe drought stress increased membrane lipid peroxidation (MDA) in chickpea plants, which was more evident in non-inoculated than in inoculated plants. Inoculation of chickpea by AM significantly increased POD and PPO activities compared with non-inoculated chickpea, but had no effect on CAT activity and proline content of leaves. The reaction of chickpea cultivars to inoculation by AM species and irrigation levels were different. ILC-482 showed that antioxidant enzymes activities were more and thus less MDA compared with Pirouz cultivar. In general, the most POD and PPO activities were recorded for inoculated plants with G. etunicatum and G. versiform species, and the most APX activity was observed in plants inoculated with G. intraradices.  相似文献   

5.
In this work, the effects of NaCl (0, 50, 100, and 150 mM), proline (0, 5 and 10 mM) and NaCl + proline in combinations on activity of polyphenol oxidase (PPO; E.C. 1.10.3.1) and soluble protein content have been investigated in the root, stem and leaf tissues of bean (Phaseolus vulgaris L.) seedlings grown in embryo culture. PPO activities were higher in all the tissues treated with NaCl, proline and NaCl + proline combinations those that of the control tissues. The protein content was very high in tissues exposed to proline and NaCl + proline combination, but NaCl alone decreased protein contents in root and leaf tissues. The results suggest that proline may play a role as an enzyme-stabilizing agent in salt stress.  相似文献   

6.
采用盆栽试验,研究了不同浓度(0、50、100、200和400 mmol·L-1)NaCl处理对1年生大果白刺生长状况及叶片过氧化氢(H2O2)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、抗坏血酸过氧化物酶(APX)活性、水势、可溶性糖和脯氨酸含量的影响.结果表明: 与对照相比,低浓度NaCl处理(≤50 mmol·L-1)对大果白刺生长没有显著的抑制作用,叶片的SOD、POD、CAT和APX活性均有所提高;高浓度(>50 mmol·L-1)NaCl处理抑制了大果白刺的冠幅面积、分枝数和叶、枝、侧根干质量,叶片的SOD、CAT、POD活性和可溶性糖、脯氨酸含量显著下降. 随NaCl处理浓度升高,H2O2和MDA含量增加,叶片水势降低.
  相似文献   

7.
In order to evaluate the effects of nano Zn-Fe oxide and bio fertilizer on physiological traits, antioxidant activity and yield of wheat under salinity stress, a factorial experiment was conducted based on RCBD with three replications.Treatments were included salinity in three levels (no-salt, salinity 25 and 50 mM NaCl), four bio fertilizers levels (no bio fertilizer, seed inoculation by Azotobacter, Azosperilium, Pseudomonas) and nano oxide (without nano, application of nano Zn oxide, nano Fe oxide and nano Fe-Zn oxide 1.5 g/lit). Salinty stress decreased the chlorophyll-a, chlorophyll-b, total chlorophyll, photochemical efficiency of PSII and yield of wheat, whearas electrical conductivity, soluble sugars, proline content, and the activities of Catalase (CAT), Peroxidase (POD) and Polyphenol Oxidase (PPO) enzymes increased. Similar results were observed in CAT, POD and PPO activities due to inoculation by bio fertilizers and nano oxide. Maximum of soluble sugars and proline content were observed in the highest salinity level and application of Pseudomonas. Application of nano Zn-Fe oxide increased about 17.40% from grain yield in comparision with no application of nano oxide in the highest salinity level. Generally, it was conducted that bio fertilizer and nano oxide can be used as a proper tool for increasing wheat yield under salinity condition.  相似文献   

8.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

9.
Abstract

The mechanism of growth amelioration in salt-stressed maize (Zea mays L. cv., DK 647 F1) by exogenously applied mannitol (M) and thiourea (T) was investigated. Maize seedlings were planted in pots containing perlite and subjected to 0 or 100 mM NaCl in full strength Hoagland's nutrient solution. Two levels of M (15 and 30 mM) or T (3.5 and 7.0 mM) were sprayed to the leaves of maize seedlings 10 days after germination. Salinity stress caused considerable reduction in plant dry biomass, chlorophyll content, and relative water content in the maize plants. However, it increased the activities of catalase (CAT; EC 1.11.1.6), superoxide dismutase (SOD; EC 1.15.1.1), and polyphenol oxidase (PPO; EC 1.10.3.1), and levels of hydrogen peroxide (H2O2) and electrolyte leakage, but it did not change peroxidase (POD; EC 1.11.1.7) activity. Foliar application of M or T was found to be effective in checking salt-induced shoot growth inhibition. Exogenously applied M or T reduced the activities of CAT, SOD, POD, and PPO in the salt-treated maize plants compared to those in the plants not fed with these organic compounds. Salinity increased Na+ contents but decreased those of K+, Ca2 +, and P in the leaves and roots of the maize plants. Foliar-applied M or T increased the contents of K+, Ca2 +, and P, but decreased that of Na+ in the salt-stressed maize plants with respect to those of the salt-stressed plants not supplied with mannitol or thiourea. Mannitol was found to be more effective than thiourea in improving salinity tolerance of maize plants in terms of growth and physiological attributes measured in the present study.  相似文献   

10.
NaCl salt stress induced changes in growth and enzyme activities in blackgram (Phaseolus mungo L.) seeds during germination were studied. A decrease in germination percentage, root length, shoot length, and fresh mass was noticed with an increase in NaCl concentration. With the increase in NaCl concentration and duration of stress proline content increased and catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) activities decreased.  相似文献   

11.
Application of ethephon slightly increased the growth of hyphae of Botrytis cinerea. A competitive inhibitor of ethylene binding, 2,5-norbornadiene (NBD), inhibited growth of hyphae and mycelium and retarded the development of Botrytis cinerea. Transfer of the mycelium from an atmosphere containing NBD to air relieved the inhibition, indicating that the NBD effects were non-toxic and reversible. Addition of exogenous ethylene to an atmosphere containing NBD (20 ml 1-1) effectively reduced the inhibition. Inhibition due to 40 ml 1–1 NBD was not relieved by ethylene at any of the concentrations tested; however, a positive effect of ethylene appeared following transfer of the mycelia to air. The results suggest that ethylene may be required for the growth and development of Botrytis cinerea.Abbreviations NBD 2,5-norbornadiene - ethephon 2-chloroethyl-phosphonic acid - PDA potato dextrose agar  相似文献   

12.
The changes in the antioxidant enzymes activity, total protein and proline content and their correlations with freezing tolerance (FT) (expressed as LT50) were investigated at 11 different olive cultivars at cold-acclimation (CA, in February) and non-acclimation (NA, in August) stages. Leaf samples were collected from each cultivar and were divided into two groups. The first group was immediately frozen in liquid nitrogen for further biochemical analysis. The second ones was subjected to different freezing temperatures (?5, ?10, ?15 and ?20 °C) for 10 h, in order to determine their FT. The unfrozen control samples were kept at 4 °C. The results showed that Fishomi, Mission and Shengeh were the most freezing tolerant among other cultivars. In contrast, Zard, Manzanilla and Amigdalolia were the most sensitive ones. The cold acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), polyphenol oxidase (PPO) and total protein content. However, proline content and phenylalanine ammonia-lyase (PAL) activity did not change or even decreased slightly at CA stage, compare to those samples at NA stage. It was found that LT50 to be closely correlated to POD, CAT, and PPO activity at CA and NA stages. Overall, higher leaf POD, CAT, and PPO activity could be used as important selection criteria in screening tolerant olive cultivars for cold zone climatic.  相似文献   

13.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.  相似文献   

14.
2种鼠尾草对NaCl胁迫的耐受性比较及其生理机制研究   总被引:1,自引:0,他引:1  
以具有较高药用和观赏价值的美丽鼠尾草和贵州鼠尾草为实验材料,分析2种鼠尾草在NaCl(0、200、300、400、500、600mmol·L-1)胁迫下的生长、叶绿素含量、保护酶活性和有机渗透调节物质含量的变化,以明确2种鼠尾草对NaCl胁迫的耐受性差异及其生理机制。结果显示:(1)在实验NaCl浓度范围内,美丽鼠尾草的受害程度均高于贵州鼠尾草;(2)随着NaCl浓度的提高,贵州鼠尾草叶片叶绿素含量无显著变化,而美丽鼠尾草叶绿素含量逐渐显著降低;(3)当NaCl浓度从0增加到500mmol·L-1时,2种鼠尾草叶片的POD、CAT活性以及可溶性糖、可溶性蛋白质和脯氨酸含量逐渐升高,且美丽鼠尾草叶片的SOD活性也逐渐升高;(4)当NaCl浓度达到600mmol·L-1时,美丽鼠尾草叶片可溶性糖、可溶性蛋白质和脯氨酸含量继续增加,SOD、POD和CAT活性开始降低但仍显著高于对照,而贵州鼠尾草叶片的POD和CAT活性继续增加,可溶性糖、可溶性蛋白质和脯氨酸含量开始降低但仍显著高于对照。研究表明,贵州鼠尾草在NaCl胁迫下具有较高的渗透调节物质含量,而且随着NaCl浓度的增加能够维持较高的保护酶活性,因此对NaCl胁迫的耐受性强于美丽鼠尾草。  相似文献   

15.
【背景】青枯劳尔氏菌(Ralstonia solanacearum,R.S)引发的姜瘟病是生姜产业发展的瓶颈问题。丛枝菌根真菌(arbuscular mycorrhiza fungi, AMF)与深色有隔内生真菌(dark septate endophytes,DSE)是两类重要的共生微生物。【目的】前期研究发现,AMF与DSE可提高生姜对姜瘟病的抗性,但其抗病机制尚不清楚,极大地限制了利用这两类共生真菌对该病的防治。【方法】在温室条件下做盆栽试验,以生姜组培苗为材料,设立接种AMF、DSE和不接种AMF、DSE的对照(CK)处理,并在上述处理下的植物生长4周后淋入病原菌液,病原菌接种1周后,通过测定菌根侵染率、发病率、叶绿素含量、光合指标、磷(P)含量、防御性酶活性及丙二醛(malondialdehyde, MDA)含量,研究AMF和DSE互作对病原菌侵染后生姜生长和生理生化指标的影响。【结果】AMF和DSE分别使姜瘟病发病率降低了45.27%和52.04%(P<0.05)。AMF+DSE组合处理抑病效果更好,发病率较对照降低60.87%(P<0.05)。AMF、DSE及...  相似文献   

16.
以盐敏感型黄瓜品种‘津春2号’为材料,研究了丛枝菌根真菌(AMF)对盐胁迫下黄瓜幼苗生长及叶片、根系中渗透调节物质含量和抗氧化酶活性的影响.结果表明:(1)在盐胁迫条件下,黄瓜幼苗生长受到明显抑制,其株高、地上部、地下部干鲜重均明显减小,同时体内可溶性蛋白、可溶性糖、脯氨酸和MDA含量,以及O2(÷)产生速率和SOD、POD、CAT活性均比对照显著升高.(2)盐胁迫下接种AMF可显著促进黄瓜植株的生长,进一步提高黄瓜幼苗体内可溶性蛋白、可溶性糖和脯氨酸含量及SOD、POD、CAT活性,而显著降低MDA含量和O2(÷)产生速率.研究表明,AMF可通过显著促进盐胁迫下黄瓜幼苗体内渗透调节物质积累和抗氧化酶活性提高,有效降低体内膜脂过氧化水平,从而缓解盐胁迫对植株的伤害,增强黄瓜幼苗对盐胁迫的耐性.  相似文献   

17.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

18.
周瑞莲  逄金强  宋玉 《生态学报》2022,42(1):196-208
以海岸防风固沙优势树种紫穗槐(Amorpha fruticosa Linn)和黑松(Pinus thunbergii Parl)为研究对象,利用野外便携式沙风洞用间歇风吹模拟自然阵风,通过分析间歇强净风(18m/s)和强风沙流(172.93g cm-1 min-1)吹袭过程中和风后恢复中,两树种叶片膜脂过氧化产物含量、抗氧化酶活力、渗透调节物含量的变化,以探讨其对自然阵风吹袭响应机制及自愈修复生理机制。结果表明,自然状况下,紫穗槐和黑松叶片相对含水量(RWC)相近,但抗氧化酶活力及种类和渗透调节物含量及种类上存在差异。紫穗槐叶片丙二醛含量(MDA)、脯氨酸含量及过氧化氢酶(CAT)和过氧化物酶(POD)活力分别较黑松高93.3%、78.6%、118.8%、6.5倍。而黑松可溶糖含量和超氧化物歧化酶(SOD)活力较紫穗槐高111.5%和28.2%。在间歇净风和风沙流处理中,随着风吹袭次数增多,黑松叶片RWC趋于小幅降低,可溶性糖含量及POD、SOD、CAT活力呈小幅波动式变化;紫穗槐叶片RWC大幅下降,伴随着脯氨酸含量,POD、CAT、SOD活...  相似文献   

19.
Salinity is an important abiotic factor that limits plant growth and development. The influence of salt stress induced by sodium chloride on plant growth, proline content, level of lipid peroxidation and activities of antioxidative enzymes was studied in F1 hybrid DH10 and four dihaploid lines (207B, 238C, 239K, 244B) of tobacco (Nicotiana tabacum L.). Dihaploids were obtained from anther-derived haploids of hybrid DH10 and were previously proved to be tolerant to Potato virus Y (PVY). In our study, plants were grown in vitro and exposed to NaCl (100 and 200 mM) for 33 days. All dihaploids and hybrid DH10 showed reduced growth after NaCl treatment. They accumulated significant amounts of sodium and proline in response to salt stress as have already been observed in tobacco and other plant species. In tobacco exposed to NaCl the lipid peroxidation level did not increase and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase and catalase (CAT) mostly did not change significantly. The exception was line 239K where salt induced higher activities of SOD, CAT and POD. Two (238C and 244B) out of four dihaploids appeared more susceptible to salt stress as they showed weak growth in correlation with high proline and sodium content. Therefore, it seems that salt tolerance is not associated with tolerance to PVY. Variations in malondialdehyde and proline content as well as in enzymes activities observed among tobacco lines imply that dihaploids have different genetic properties which might result in different sensitivity to NaCl.  相似文献   

20.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl处理下红树植物秋茄(Kan-deliacandel)幼苗叶片中抗氧化酶活性、抗氧化物质及脯氨酸含量的影响。结果表明:NaCl处理下,秋茄幼苗叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等4种活性氧清除酶的活性均受到明显抑制(P<0.05),SNP可以不同程度地恢复SOD、POD、CAT的活性,但对APX活性影响不大;SNP提高谷胱甘肽(GSH)及类胡萝卜素(Car)的含量,促进脯氨酸含量的上升,显著降低叶片中过氧化氢(H2O2)和丙二醛(MDA)的累积。表明外源NO可以缓解NaCl处理诱导的秋茄幼苗叶片氧化损伤,降低膜脂过氧化水平,有利于秋茄适应盐生环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号