首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

2.
Dopamine and 2-chloroadenosine independently promoted the accumulation of cyclic AMP in retinas from 16-day-old chick embryos. The two compounds added together either in saturating or subsaturating concentrations were not additive for the accumulation of the cyclic nucleotide in the tissue. This fact was shown to be due to the existence of an adenosine receptor that mediates the inhibition of the dopamine-dependent cyclic AMP accumulation in the retina. Adenosine inhibited, in a dose-dependent fashion, the accumulation of cyclic AMP induced by dopamine in 12-day-old chick embryo retinas, with an IC50 of approximately 1 microM. This effect was not blocked by dipyridamole. N6-(l-Phenylisopropyl)adenosine, (l-PIA) was the most potent adenosine analog tested, showing an IC50 of 0.1 microM which was two orders of magnitude lower than its stereoisomer d-PIA (10 microM). The maximal inhibition of the dopamine-elicited cyclic AMP accumulation by adenosine and related analogs was 70%. The inhibitory effect promoted by adenosine was blocked by 3-isobutyl-1-methylxanthine (IBMX) or by adenosine deaminase. Adenine was not effective; whereas ATP and AMP promoted the inhibition of the dopamine effect only at very high concentrations. Apomorphine was only 30% as effective as dopamine in promoting the cyclic AMP accumulation in retinas from 11- to 12-day-old embryos and 2-chloroadenosine did not interfere with the apomorphine-mediated shift in cyclic AMP levels. In the retinas from 5-day-old posthatched chickens dopamine and apomorphine were equally effective in eliciting the accumulation of cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: The influence of the adenosine A2A receptor on the A1 receptor was examined in rat striatal nerve terminals, a model for other cells in which these receptors are coexpressed. Incubation of striatal synaptosomes with the A2A receptor agonist 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS 21680) caused the appearance of a low-affinity binding site for the A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA). This effect was blocked by the A2A receptor antagonist ZM241385 and by the protein kinase C inhibitor chelerythrine, but not by the protein kinase A inhibitor N -(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004). The effect was not seen with striatal membranes or with hypotonically lysed synaptosomes. These results demonstrate a protein kinase C-mediated heterologous desensitisation of the A1 receptor by the A2A receptor.  相似文献   

4.
Barbiturates Are Selective Antagonists at A1 Adenosine Receptors   总被引:3,自引:0,他引:3  
Barbiturates in pharmacologically relevant concentrations inhibit binding of (R)-N6-phenylisopropyl[3H]adenosine ([3H]PIA) to solubilized A1 adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. Ki values are similar to those obtained for membrane-bound receptors and are 31 microM for (+/-)-5-(1,3-dimethyl)-5-ethylbarbituric acid [(+/-)-DMBB] and 89 microM for (+/-)-pentobarbital. Kinetic experiments demonstrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-N6-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The stimulation of adenylate cyclase via A2 adenosine receptors in membranes from N1E 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. It is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A1 adenosine receptor antagonism may convey excitatory properties to barbiturates.  相似文献   

5.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

6.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

7.
8.
Abstract: The adenosine A2a receptor inhibition of potassium (15 m M )-evoked GABA release from striatal nerve terminals has been examined. High extracellular calcium concentrations (4 m M ) reduced the effect of the A2a receptor agonist CGS-21680 (1 n M ). CGS-21680 inhibited GABA release in the presence of the L-type calcium channel blocker nifedipine, which itself inhibited evoked GABA release (by 16 ± 4%). ω-Conotoxin inhibited the evoked release by 45 ± 4% and prevented the action of CGS-21680. Forskolin and 8-bromo cyclic AMP both stimulated evoked GABA release at low concentrations, but at higher concentrations they abolished the inhibition by CGS-21680 without affecting the evoked release. The nonselective protein kinase inhibitor H-7 inhibited both the evoked release and the inhibition by CGS-21680, whereas the selective protein kinase A and G inhibitor HA-1004 had no effect on either evoked release or the action of CGS-21680. Pretreatment with pertussis toxin did not affect the A2a receptor-mediated inhibition. Therefore, the effect of A2a receptor stimulation was not mediated by protein kinases A or G but was inhibited by elevated cyclic AMP levels and mimicked by inhibitors of the N-type calcium channel and protein kinase C.  相似文献   

9.
The adenosine A1 receptors of sheep brain membranes have been identified by the specific binding of radiolabeled cyclohexyl[3H]adenosine ([3H]CHA). Pretreatment of membranes with periodate-oxidized CHA causes a dose- and time-dependent decrease in the number of binding sites. No decrease occurs when membranes are pretreated with CHA. Binding of [3H]CHA to the remaining sites occurs with the same characteristics as binding to the untreated receptor population.  相似文献   

10.
Endogenous adenosine acting via A1 adenosine receptors is capable of inhibiting adenylate cyclase activity and neurotransmitter release in the brain. In this report, we describe the synthesis and attributes of a new series of A1 adenosine receptor agonists. One of these, [125I]N6-2-(4-amino-3-iodophenyl)ethyladenosine, can be used as a radioligand and another, [125I]N6-2-(4-azido-3-iodophenyl)ethyladenosine, as a photoaffinity probe. The unlabeled ligand, N6-2-(4-aminophenyl)ethyladenosine, and its iodinated product are full agonists, inhibiting cyclic AMP production in rat cerebral cortex membranes to the same extent as the prototypic A1 agonist N6-R-1-phenyl-2-propyladenosine. These new ligands are not substrates for adenosine deaminase. The new photoaffinity azide described here labels an Mr 38,000 protein that displays all the pharmacological characteristics expected of the A1 adenosine receptor. This is the same molecular-weight protein previously described using a cross-linking radioligand. This new azide compound demonstrates a 15-fold higher efficiency of incorporation, making it the photoaffinity probe of choice for tissues containing low concentrations of A1 adenosine receptors.  相似文献   

11.
Abstract: The adenosine modulation of glutamate exoeytosis from guinea pig cerebrocortical synaptosomes is investigated. Endogenously leaked adenosine is sufficient to cause a partial tonic inhibition of 4-aminopyridine-evoked glutamate release, which can be relieved by adenosine deaminase. The adenosine A1 receptor is equally effective in mediating inhibition of glutamate exocytosis evoked by 4-aminopyridine (where K+-channel activation would inhibit release) and by elevated KC1 (where K+-channel activation would have no effect), arguing for a central role of Ca2+-channel modulation. In support of this, the plateau phase of depolarization-evoked free Ca2+ elevation is decreased by adenosine with both depolarization protocols. No effect of adenosine agonists is seen on membrane potential in polarized or KC1- or 4-aminopyridine-stimulated synaptosomes. The interaction of protein kinase C with the A1 receptormediated inhibition is examined. Activation of protein kinase C by 4β-phorbol dibutyrate has been shown previously by this laboratory to modulate glutamate release via K+-channel inhibition, and is shown here to have an additional action of decoupling the adenosine inhibition of glutamate exocytosis.  相似文献   

12.
Abstract: Prolonged activation of an A2A adenosine receptor significantly inhibits the cellular response to subsequent stimulation (A2A desensitization). We have reported previously that activation of phosphodiesterase (PDE) contributes to A2A desensitization in PC12 cells. In the present study, we show that a type IV PDE (PDE4)-selective inhibitor (Ro 20-1724) effectively blocks the increase in PDE activity in desensitized cells. Thus, PDE4 appears to be the PDE specifically activated during A2A desensitization in PC12 cells. Prolonged treatment of PC12 cells with an A2A-selective agonist (CGS21680) leads to increased PDE4 activity in a dose-dependent manner, which can be blocked by an A2A-selective antagonist [8-(3-chlorostyryl)caffeine]. Using two PDE4 antibodies, we were able to demonstrate that the levels of two PDE4-immunoreactive bands (72 and 79 kDa) were increased significantly during A2A desensitization. Prolonged treatment with forskolin to elevate intracellular cyclic AMP contents also resulted in increased PDE4 activity. In addition, activation of PDE4 activity during A2A desensitization could be blocked by a protein kinase A (PKA)-selective inhibitor (H89) and was not observed in a PKA-deficient PC12 cell line (A123). Taken together, activation of PDE4 via a cyclic AMP/PKA-dependent pathway plays a critical role in dampening the signal of the A2A receptor.  相似文献   

13.
Abstract: The influence of pH on the equilibrium dissociation constant and on kinetic association and dissociation constants was studied for adenosine receptor agonist L-N6-[adenine-2,8-3H, ethyl-2-3H]phenylisopropyladenosine ([3H]R-PIA) and antagonist 8-cyclopentyl-1,3-[3H]-dipropylxanthine ([3H]DPCPX). Two ionizable groups, of pK 7.0 and pK 7.4, are involved in the [3H]R-PIA associations with high- and low-affinity states of the receptor, and another group, of pK 6.0, is involved in the association with the low-affinity state. No ionizable group is involved in the dissociation process for the high-affinity state, whereas two ionizable groups, of pK 6.0 and 6.5, are involved in the low-affinity state. For [3H]DPCPX, three ionizable groups (pK 6.0, 7.4, and 8.0) are involved in the association process and only one group, (pK 6.0), is involved in the dissociation step. The apparent pK values obtained agree with histidine residues. We thus studied the effect of diethylpyrocarbonate (DEP), which reacts irreversibly with histidine residues, on agonist and antagonist binding to A1 adenosine receptors from pig brain cortical membranes. DEP treatment of membrane reduced the affinity (KD) and the total binding (R) of the agonist and the antagonist. Membrane preincubation with unlabeled ligand (R-PIA or DPCPX) prevented the effect of DEP modification observed when the same ligand, but with label, is added to the same membranes, but did not prevent the DEP modification on different, labeled ligand. The pattern of protective action of R-PIA, DPCPX, adenosine, and guanylylimidodiphosphate in DEP treatment and the displacement curves of radiolabeled agonist and antagonist by both unlabeled ligands indicated that the interaction site for agonist and antagonist binding is the same, although the complete mechanisms for recognition and binding differ.  相似文献   

14.
Adenosine's effects result from a balanced activation of inhibitory A1 and facilitatory A2A receptors. Because in aged animals there is an increased number of A2A receptors, we now compared the efficiency of A2A receptors in cortical and striatal preparations of young adult (6-week-old) and aged (2-year-old) rats. In cortical, in contrast to striatal, membranes from aged rats, A2A receptors were more tightly coupled to G proteins, because 5'-guanylylimidodiphosphate (100 microM) increased by 321% the Ki of the A2A agonist CGS21680 as a displacer of binding of the A2A antagonist [3H]ZM241385 (1 nM), compared with a 112% increase in young rats. In cortical slices, CGS21680 (30-1,000 nM) was virtually devoid of effect on cyclic AMP accumulation in young rats but increased cyclic AMP accumulation with an EC50 of 153 nM in aged rats, whereas the efficiency of CGS21680 was similar in striatal slices of young and aged rats. CGS21680 (30 nM) was virtually devoid of effect on acetylcholine release from hippocampal CA1 slices of young rats but caused a 55% facilitation in aged rats. These results show that the number of A2A receptors, their coupling to G proteins, and their efficiency are enhanced in the limbic cortex of aged rats, suggesting a greater involvement of facilitation in adenosine responses.  相似文献   

15.
16.
Abstract: The pH dependency of the binding of ligands to adenosine A2a receptors in rat striatal membranes was examined. For those agonists sensitive to adenosine deaminase a solubilised membrane preparation was used. A two- to fourfold increase in affinity was observed for CGS-21680, 5'- N -ethylcarboxamidoadenosine, adenosine, 3'-deoxyadenosine, 5'-deoxyadenosine, inosine, and N 6-methoxypurine riboside on lowering the ambient pH from 7.0 to 5.5. In contrast, no such pH dependency was observed with 2'-deoxyadenosine, although 2'-methoxyadenosine binding was pH dependent. This effect on the affinity of CGS-21680 was reduced by diethylpyrocarbonate and restored by hydroxylamine and implied a pK value of 7.0 for the histidine residue involved. No such dependence was observed with cyclopentyltheophylline or dimethylpropargylxanthine. It is concluded that one of the histidines conserved in the adenosine receptor binding site acts as a hydrogen bond donor to the oxygen of the 2'-hydroxyl group of adenosine agonists.  相似文献   

17.
Abstract: Forskolin treatment of cerebellar granule cells in culture resulted in bidirectional regulation of the expression of GABAA receptor α1 and α6 subunits. Thus, forskolin applied at 2 days in vitro (DIV) increased expression of the α1 subunit but decreased the expression of the α6 subunit. Values with respect to control cultures, both assayed at 9 DIV by immunoblotting, were 310 ± 48% for α1 and 25 ± 16% for the α6 subunit. Similar effects were evoked following chronic treatment with both dibutyryl cyclic AMP and 3-isobutyl-1-methylxanthine. Dideoxyforskolin had no effect on the level of expression of either the α1 or the α6 GABAA receptor subunits. The changes in subunit expression were accompanied by a 1.7-fold increase in number of total specific [3H]Ro 15-4513 binding sites expressed by intact cerebellar granule cells. This increase in total binding sites was accommodated by a 2.7-fold increase in number of diazepam-sensitive Ro 15-4513 binding sites in accordance with the observed increase in α1 subunit expression. The number of diazepam-insensitive subtype of binding sites were not significantly changed. These results suggest that GABAA receptor subtype expression can be differentially regulated by intracellular cyclic AMP concentration.  相似文献   

18.
Abstract: Stable expression of the human H2 receptor in Chinese hamster ovary cells resulted in an increase in basal cyclic AMP (cAMP) production, which was inhibited by the inverse agonists cimetidine, famotidine, and ranitidine with potencies similar to those found for the rat H2 receptor. Burimamide, a neutral antagonist at the rat H2 receptor, behaved as a weak partial agonist at the human H2 receptor. Burimamide competitively antagonized both the histamine-induced increase in cAMP and the cimetidine-induced reduction of the basal cAMP level with apparent K B values that were similar to its H2 receptor affinity. Investigation of the modulation of receptor expression after long-term drug treatment revealed that at low concentrations histamine induced a significant reduction in H2 receptor expression, whereas at high concentrations receptor expression was slightly increased. The partial agonist burimamide induced, like inverse agonists, an upregulation of the human H2 receptor after prolonged treatment. These findings suggest a structural instability of the constitutively active human H2 receptor in transfected Chinese hamster ovary cells. Occupation of the H2 receptor by any ligand reduces the instability, thus resulting in higher cellular expression levels.  相似文献   

19.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

20.
Abstract: The modulation by adenosine analogues and endogenous adenosine of the electrically evoked release of [3H]acetylcholine ([3H]ACh) was compared in subslices of the three areas of the rat hippocampus (CA1, CA3, and dentate gyrus). The mixed A1/A2 agonist 2-chloroadenosine (CADO; 2–10 µM) inhibited, in a concentration-dependent manner, the release of [3H]ACh from the three hippocampal areas, being more potent in the CA1 and CA3 areas than in the dentate gyrus. The inhibitory effect of CADO (5 µM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas. The A2A agonist CGS-21680 (30 nM) produced a greater increase of the evoked release of [3H]ACh in the CA3 than in the dentate gyrus areas, whereas no consistent effect was found in the CA1 area or in the whole hippocampal slice. The excitatory effect of CGS-21680 (30 nM) in the CA3 area was prevented by the adenosine receptor antagonist 3,7-dimethyl-1-propargylxanthine (10 µM). Both adenosine deaminase (2 U/ml) and DPCPX (250 nM) increased the evoked release of [3H]ACh in the CA1 and CA3 areas but not in the dentate gyrus. The amplitude of the effect of DPCPX and adenosine deaminase was similar in the CA1 area, but in the CA3 area DPCPX produced a greater effect than adenosine deaminase. It is concluded that the electrically evoked release of [3H]ACh in the three areas of the rat hippocampus can be differentially modulated by adenosine. In the CA1 area, only A1 inhibitory receptors modulate ACh release, whereas in the CA3 area, both A2A excitatory and A1 inhibitory adenosine receptors modulate ACh release. In the dentate gyrus, both A1 inhibitory and A2A excitatory adenosine receptors are present, but endogenous adenosine does not activate them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号