首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

2.
The effect of LCB29 was tested on twitch characteristics, tetanic tension, and K+ and voltage-clamp contractures of rat soleus muscle fibers. In concentrations ranging from 10(-6) to 5 x 10(-4) M, LCB29 simultaneously inhibited the twitch amplitude, the maximum rate of tension development, and the maximum rate of relaxation. In concentrations ranging from 10(-5) to 10(-4) M, tetanic tension (100 Hz, 1 s) was inhibited by the same amount. The effect of 5 x 10(-5) M LCB29 was studied on K+ contractures and contractures induced, under voltage-clamp conditions, by long-lasting depolarizations. Its effect was significantly stronger than those on twitch and tetanic tension. In addition, LCB29 had a dual effect on strength--duration curves for mechanical threshold. It increased both the rheobasic potential and the steepness of the curve. It is concluded that LCB29 exerts a direct myorelaxant effect on rat soleus muscle; two sites of action are probably involved.  相似文献   

3.
Strips of soleus (slow twitch, oxidative) and gracilis (fast-twitch, glycolytic) muscle were obtained from 27 anesthetized cats and mounted in organ baths filled with oxygenated Krebs-Ringer solution (37 degrees C). The responses to caffeine, halothane (1%), caffeine in the presence of halothane, and electrical stimulation in the presence of halothane were examined in the two fiber types. These responses were compared with those observed in paired strips of muscle that had been treated with verapamil (10 or 28 microM), a slow calcium (Ca2+) channel blocker, with zero Ca2+, or with zero Ca2+ where magnesium (3.7 mM Ca2+) was added to replace the Ca2+. Halothane-induced contractures in the soleus were blocked by verapamil and zero Ca2+. Caffeine-induced contractures and tetanic contractions were attenuated in zero Ca2+ and by verapamil in both fiber types. Halothane overcame verapamil-induced reductions of caffeine contractures and tetanic contractions in both fiber types. In contrast, halothane did not overcome zero Ca2+-induced reductions in caffeine contractures or tetanic contractions in either fiber type. Furthermore, the addition of Mg2+ to the zero Ca2+ did not restore the responses. The findings with verapamil indicate that in cat muscle, both halothane- and caffeine-induced contractures and tetanic contractions are dependent on the influx of extracellular Ca2+. This extracellular Ca2+ may enter through the slow Ca2+ channels. However, because halothane in combination with caffeine or electrical stimulation overcame the effects of verapamil, there may be other sites involved.  相似文献   

4.
The effects of 5 weeks treadmill-exercise training on isometric tension and contractile proteins were studied in intact and skinned isolated small bundles of rat skeletal soleus and extensor digitorum longus (edl) fibers. In soleus and edl muscles, 5 weeks exercise training: (i) increased twitch amplitude by 25% and 8%, respectively, without modification in the time-to-peak tension and the time constant of relaxation, (ii) increased the amplitude of K(+) contracture by 93% and 88%, respectively, and accelerated its relaxation by 17% and 43%, respectively, and (iii) increased the amplitude of caffeine contractures (soleus: 0.5 mM: 86%, 10 mM: 77%; edl: 0.5 mM: 89%, 10 mM: 87%). In conclusion, changes in contractile responses were associated with shifts in the steady state inactivation curves and in the voltage-dependent activation curve to a more negative potential, with increases in soleus and edl caffeine sensitivity, without changes in the Ca(2+) sensitivity of contractile proteins and myosin heavy chain isoforms.  相似文献   

5.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

6.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

7.
Tension responses to ramp stretches of 1-3% Lo (fiber length) in amplitude were examined in resting muscle fibers of the rat at temperatures ranging from 10 degrees C to 36 degrees C. Experiments were done using bundles of approximately 10 intact fibers isolated from the extensor digitorum longus (a fast muscle) and the soleus (a slow muscle). At low temperatures (below approximately 20 degrees C), the tension response consisted of an initial rise to a peak during the ramp followed by a complex tension decay to a plateau level; the tension decay occurred at approximately constant sarcomere length. The tension decay after a standard stretch at approximately 3-4.Lo/s contained a fast, an intermediate, and a (small amplitude) slow component, which at 10 degrees C (sarcomere length approximately 2.5 microns) were approximately 2000.s-1, approximately 150.s-1, and approximately 25.s-1 for fast fibers and approximately 2000.s-1, approximately 70.s-1 and approximately 8.s-1 for slow fibers, respectively. The fast component may represent the decay of interfilamentary viscous resistance, and the intermediate component may be due to viscoelasticity in the gap (titin, connectin) filament. The two- to threefold fast-slow muscle difference in the rate of passive tension relaxation (in the intermediate and the slow components) compares with previously reported differences in the speed of their active contractions; this suggests that "passive viscoelasticity" is appropriately matched to contraction speed in different muscle fiber types. At approximately 35 degrees C, the fast and intermediate components of tension relaxation were followed by a delayed tension rise at approximately 10.s-1 (fast fibers) and 2.5.s-1 (slow fibers); the delayed tension rise was accompanied by sarcomere shortening. BDM (5-10 mM) reduced the active twitch and tetanic tension responses and the delayed tension rise at 35 degrees C; the results indicate stretch sensitive activation in mammalian sarcomeres at physiological temperatures.  相似文献   

8.
The effect of hypertonic solutions on the tension of isolated twitch muscle fibers of the frog has been investigated. Increased tonicity up to about 1.7 times normal (1.7 T) caused a very small, graded, maintained tension increase. Above about 1.7 T a large, transient contracture response was superimposed on the small tension. The contracture response was graded with tonicity and reached a maximum at 2.5 T of 108 ± 25 mN·mm2 a third of the maximum tetanic tension in isotonic solution. Contracture tension developed with a delay which decreased with increased tonicity. The contracture threshold was lower and the delay shorter in small fibers than in large. Contractures were obtained equally well in depolarized as in polarized fibers. They were completely suppressed by 0.1–0.5 mM tetracaine. The possible mechanism responsible for the tension-inducing effect of hypertonic solutions is discussed in terms of the close similarity between the properties of these contractures and those caused by caffeine, and it is suggested that the effect is due to a release of calcium from internal stores.  相似文献   

9.
D O Karpenko 《Tsitologiia》1979,21(6):743-747
Contractures induced in rat fast (EDL) and slow (SOL) skeletal muscles by 0.03--3 mM of caffeine in conjunction with rapid cooling of muscle from 30 to 0 degrees C (rapid cooling contructures, RCC) were studied. Uprising speed and tension of RCC were dependent on caffeine concentration and cooling gradient. The minimal necessary temperature, below which contractures still developed, was +6 degrees. The initial temperature did not play any important role. Optimal conditions for RCC (when its tension reached 80--200% of twitch) were: cooling from 30 to 0 degrees, and concentrations of caffeine being 5 mM for SOL, and 6--7 mM for EDL. Disruption of T tubules caused by the removal of glycerol and urea (400--600 mM) from muscle fibers did not influence the RCC tension. During the first hour of the removal, relaxation rate of RCC was lowered. In the presence of 400 mM of urea and 600 mM of 1.3-dimethylurea (the latter did not disrupt the T-system), RCC was depressed by 90%, and the rate of tension development was greatly lowered, while twitches remained unchanged. This effects could be reversed during non-electrolyte removal. This may suggest that Ca2+ release is inhibited selectively by urea and by dimethylurea.  相似文献   

10.
Strips of soleus (100% type I) and gracilis (90% type II) muscle were obtained from anesthetized cats and mounted in organ baths filled with aerated Krebs-Ringer solution (37 degrees C). The contractile patterns in response to electrical stimulation (0.1 Hz, 25 V, 5 ms), caffeine, halothane, and caffeine in the presence of halothane were examined in the two fiber types. The ability of 25 microM dantrolene to alter the contractile patterns was also evaluated. In vitro contractile properties in response to electrical stimulation were similar to properties observed in situ, except that twitch tension in soleus muscle was significantly less in vitro than in situ. In the presence of halothane, type I soleus muscle developed a rapid contracture. The contracture was blocked by pretreatment with dantrolene and was reversed by addition of dantrolene at the peak of the response. Halothane-induced contractures were not observed at any time in type II gracilis. Type I soleus was also significantly more sensitive both to caffeine alone and to caffeine in the presence of halothane than was type II gracilis. In both fiber types, halothane increased the sensitivity of the muscles to caffeine. Dantrolene attenuated caffeine-induced contractures in both fiber types, but the attenuating effect was less in the presence of halothane. The findings of a halothane-induced contracture in the cat soleus and differential sensitivities of the two muscle fiber types to caffeine indicate that further studies in these two muscles may be useful for delineating the mechanisms inducing contracture in muscle from individuals susceptible to malignant hyperthermia.  相似文献   

11.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

12.
Rat soleus muscles were denervated and stimulated in vivo for periods of up to 104 days. Stimuli used were trains of 1 ms pulses at 100 Hz delivered for periods of 1 s; trains were repeated every 10-100 s. In a majority of animals the tension of the muscles was maintained at about 10% of normal, equivalent to muscles denervated but unstimulated for 20 days. At the longest periods the stimulated muscles developed ten times more tension than ones that were denervated but not stimulated. In denervated and denervated-stimulated muscles twitch contraction and relaxation times were prolonged, compared with controls, for up to 3 weeks. Thereafter both sets showed a speeding of the isometric twitch that was greater in the stimulated muscles. At the longest periods the twitch was as short as that of a denervated fast muscle. Stimulation did not affect contralateral denervated muscles. Twitch: tetanus ratios remained high despite stimulation, and muscles showed little post-tetanic potentiation. Tension developed more rapidly in the tetani of the stimulated muscles, even allowing for larger final values. Maximum velocity of shortening was increased in many of the stimulated muscles, and there was a proportional flattening of the force-velocity curve, i.e. a/P0 increased. Maximum velocity and a/P0 increased reciprocally with twitch time to peak, so that those muscles that had twitches most changed by stimulation also had their isotonic properties modified to the greatest extent. Even at the longest period of stimulation, twitch time course and tetanic tension were not converted to those of normal fast muscle.  相似文献   

13.
A myothermal technique was used to measure initial heat and tension independent heat from isometrically contracting papillary muscles taken from the right ventricle of rabbits. Tension independent heat produced by the muscle at Lo was isolated with a 2,3-butanedione monoxime (diacetyl monoxime)--hyperosmotic Krebs solution. The effects of the inotropic drugs isoproterenol (1 X 10(-7) M), UDCG 115 (2 X 10(-4) M), and caffeine (2 X 10(-3) M) on heat and mechanical output were measured. We tested the hypothesis that these drugs alter peak twitch tension by increasing the total amount of Ca2+ cycled during the twitch, assuming that net tension independent heat is proportional to total Ca2+ cycled. The hypothesis was rejected for each drug as the positive inotropic effects of isoproterenol and UDCG 115 on twitch tension were not accompanied by increases in net tension independent heat. Net tension independent heat was actually depressed by UDCG 115. The negative inotropic effect of caffeine on twitch tension was accompanied by an increase in tension independent heat at times between the end of mechanical relaxation and the next stimulus. Possible mechanisms to account for these results are discussed.  相似文献   

14.
We have investigated the physiological role of desmin in skeletal muscle by measuring isometric tension generated in skinned fibres and intact skeletal muscles from desmin knock-out (DES-KO) mice. About 80% of skinned single extensor digitorum longus (EDL) fibres from adult DES-KO mice generated tensions close to that of wild-type (WT) controls. Weights and maximum tensions of intact EDL but not of soleus (SOL) muscles were lowered in DES-KO mice. Repeated contractions with stretch did not affect subsequent isometric tension in EDL muscles of DES-KO mice. Tension during high frequency fatigue (HFF) declined faster and this deficiency was compensated in DES-KO EDL muscles by 5 mM caffeine which had no influence on HFF in WT EDL. Furthermore, caffeine evoked twitch potentiation was higher in DES-KO than in WT muscles. We conclude that desmin is not essential for acute tensile strength but rather for optimal activation of intact myofibres during E-C coupling.  相似文献   

15.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

16.
Effects of the summation of forces generated by functionally isolated slow-twitch motor units (MU) of the rat soleus muscle were examined in this study. Initially, the twitch, fused tetanic and unfused tetanic contractions evoked by trains of stimuli at variable interpulse intervals were recorded for each MU. Then, two, three or four MUs were co-activated, and the recorded forces were compared to the algebraic sum of the forces of individual MUs. The mean cumulative force of twitches and the mean cumulative force of fused tetani were not statistically different from the respective algebraic sums of forces, which revealed a high degree of linearity in the summation. However, relaxation of the recorded tetanic contractions (either fused or unfused) was faster than that predicted by the linear summation of individual contractions. Moreover, for twitch and tetanic contractions, a tendency to shorten relaxation with an increasing number of co-active MUs was noted. The results indicate that forces of rat soleus slow MUs sum up more linearly than in the respective cat muscle as well as more linearly than for fast MUs in the medial gastrocnemius muscle.  相似文献   

17.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

18.
Phosphocreatine (PCr) and intracellular pH changes were monitored by 31P-NMR spectroscopy in isolated, arterially perfused cat biceps and soleus muscles, while the pH of the CO2-bicarbonate buffered perfusate was decreased from 7.1-7.4 to 6.4-6.7 by increasing the CO2 in the equilibrating gas from 5 to up to 70%. In biceps (fast twitch) muscles, intracellular pH decreased from 7.0 to 6.6 (30% CO2, 30 degrees C), peak tetanic force decreased by 8%, but the rise and relaxation times of tetanic were not significantly changed. In soleus muscles, intracellular pH decreased from 7.0 to 6.6 (30% CO2, 30 degrees C), peak tetanic force was unchanged, but the rise and relaxation times of tetani were increased by 27 and 112%, respectively. In both muscles greater decreases in tetanic force were observed during repetitive or ischemic stimulation, which resulted in intracellular pH similar to that produced by hypercapnia. Contrary to previous reports, there was no significant decrease in PCr level in either muscle type with decreased intracellular pH. In the soleus at 30 degrees C there was a significant increase in PCr level with decreased pH.  相似文献   

19.
Rabbit right ventricular papillary muscles were cooled from 30 to approximately 1 degree C immediately after discontinuing electrical stimulation (0.5 Hz). This produced a contracture that was 30-50% of the preceding twitch magnitude and required 20-30 s to develop. The contractures were identical in cooling solutions with normal (144 mM) or low (2.0 mM) Na. They were therefore not Na-withdrawal contractures. Contracture activation was considerably slower than muscle cooling (approximately 2.5 s to cool below 2 degrees C). Cooling contractures were suppressed by caffeine treatment (10.0 mM). Rapid cooling did not cause sufficient membrane depolarization (16.5 +/- 1.2 mV after 30 s of cooling) to produce either a voltage-dependent activation of contracture or a gated entry of Ca from the extracellular space. Contractures induced by treating resting muscles with 5 X 10(-5) M strophanthidin at 30 degrees C exhibited pronounced tension noise. The Fourier spectrum of this noise revealed a periodic component (2-3 Hz) that disappeared when the muscle was cooled. Cooling contractures decayed with rest (t1/2 = 71.0 +/- 9.3 s). This decay accelerated in the presence of 10.0 mM caffeine and was prevented and to some extent reversed when extracellular Na was reduced to 2.0 mM. 20 min of rest resulted in a net decline in intracellular Ca content of 1.29 +/- 0.38 mmol/kg dry wt. I infer that cooling contractures are principally activated by Ca from the sarcoplasmic reticulum (SR). The properties of these contractures suggest that they may provide a convenient relative index of the availability of SR Ca for contraction. The rest decay of cooling contractures (and hence the decay in the availability of activating Ca) is consistent with the measured loss in analytic Ca during rest. The results suggest that contraction in heart muscle can be regulated by an interaction between sarcolemmal and SR Ca transport.  相似文献   

20.
We investigated whether sprint training attenuates the deficits in force and dynamic stiffness caused by eccentric contractions to the soleus muscles of Wistar rats. Two groups of male rats were analyzed: sedentary (C, n=8) and trained (T, n=8). T rats were sprint trained for 10 weeks. Subsequently, the right soleus muscles of rats were freed under anesthesia, leaving the bone insertion and blood supply intact. Eccentric contractions were induced by lengthening muscles during tetanic contractions. Force and dynamic stiffness were tested before and after 20 rounds of eccentric contractions. Tension decline was analyzed using a two-state model (first-order kinetics) in the context of Kramer's theory. Training improved the twitch tension (C, 6.44+/-0.6N/cm(2); T, 10.90+/-0.8N/cm(2)), tetanic force (C, 61.74+/-0.6N/cm(2); T, 85.62+/-0.8N/cm(2)), and increased the dynamic stiffness (C, 41.28+/-1.0N/cm(2); T, 49.56+/-3.2N/cm(2)). Twitch tension after eccentric contractions declined to 73% and 75% in C and T groups, respectively, while tetanic tension decreased to 60% and 36% in C and T groups, respectively. After eccentric contractions, dynamic stiffness decreases were smaller in T rats (from 49.56+/-3.2 to 36.09+/-2.1N/cm(2)) than in C rats (from 41.28+/-1.0 to 20.73+/-1.8N/cm(2)). Sprint training increased the dynamic stiffness and tetanic tension of the soleus muscle and protected against the attenuation induced by eccentric contractions. Finally, the two-state model provided evidence that the number of force-generating cross-bridges increases in trained muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号