首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The metabolism of dibenzo[c,g]carbazole (DBC), was studied in vitro using microsomal fractions of mouse and rat liver from animals, which were treated with 3-methylcholanthrene (MC). The separation of extractable metabolites by high pressure liquid chromatography (HPLC) and thinlayer chromatography (TLC) as well as identification of most of them by nuclear magnetic resonance, mass spectrometry and comparison with synthetically obtained products are described. The microsomes of both species produced the same twelve compounds of which the following have been identified: five monohydroxylated derivatives (phenols), the product of further oxidation of one of them, and a dihydrodiol. The 5-OH-DBC (60% including its spontaneously-formed dimer) and the 3-OH-DBC (14%) are the main metabolites. Three minor metabolites cochromatographed with synthetically prepared 2-OH-DBC, 4-OH-DBC and 6-OH-DBC. The dihydrodiol detectable in small quantity (4–6%) was tentatively identified as 3,4-dihydroxy-3,4-dihydro-DBC by the sensitivity of its formation to very low concentrations of the inhibitor of microsomal epoxide hydrolase, 1,1,1-trichloropropene oxide, by its molecular ion and major fragment in mass spectrometry and by its dehydration product 3-OH-DBC. No other dihydrodiols were detected. The qualitative and quantitative effects of various modulators of metabolism (enzyme inhibitors, apparently homogeneous epoxide hydrolase, glutathione, supernatant fraction) were investigated. The results are discussed with respect to possible ultimate carcinogens.  相似文献   

2.
When [3H]benzo[a]pyrene is incubated in vitro together with DNA, NADPH and rat lung microsomes, covalent binding of benzo[a]pyrene (BP) metabolites to DNA occurs. These metabolite-nucleoside complexes can be resolved into several distinct peaks by elution of a Sephadex LH-20 column with a water-methanol gradient. 3-Methylcholanthrene (MC) pretreatment of animals induces the total covalent binding in vitro several-fold and increases the amounts of at least five metabolite-nucleoside complexes associated with the 7,8-diol-9,10-epoxidcs, the 7,8-oxide or quinones oxygenated further, the 4,5-oxide and phenols oxygenated further. These increases correspond well with the increases in the production of both non-K-region and K-region metabolites of BP by lung microsomes, as determined by highpressure liquid chromatography (HPLC). On the other hand, when [3H]BP is metabolized in isolated perfused rat lung, only the peak representing the 7,8-diol-9,10-epoxide bound to nucleoside(s) is readily detectable and then only in lungs from MC-treated animals. The extent of binding of BP metabolites to lung DNA is very low, about 0.0004% of the total dose applied to the perfusion medium; more than 60% of this can be accounted for by the binding of the 7,8-diol-9,10-epoxides to nucleoside(s). It is suggested that the further metabolism leading to metabolites not available to covalent binding, (e.g. conjugation) of primary BP metabolites in the intact tissue is responsible for the differences in the metabolite-nucleoside patterns observed in vivo, as compared with microsomal metabolism in vitro.  相似文献   

3.
The role of glucuronide and sulfate conjugation in presystemic inactivation of benzo[a]pyrene (BP) metabolites was investigated with rat livers perfused with BP (12 mumol). Comparisons were made between metabolite profiles and mutagenicity of medium from perfusions with and without salicylamide, a selective inhibitor of glucuronide and sulfate conjugation. After 4 h perfusion in the presence of salicylamide, certain BP metabolites (diols, quinones, phenols, and metabolites more polar than BP-9,10-diol) were significantly increased at the expense of quinones and phenols in the glucuronide fraction. Mutagenicity of medium (detected by the Ames test, using tester strains TA98 and TA100) was low in perfusion without salicylamide. Mutagenicity detected with tester strain TA98 was significantly increased in perfusions with salicylamide. Involvement of glucuronidation in BP inactivation was also observed at the subcellular level; when cofactors of glucuronidation were added to liver homogenates along with the NADPH regenerating system in the Ames test, BP mutagenicity was markedly decreased. Both the activation of BP to mutagenic metabolites and the inactivation of BP metabolites by glucuronidation was much more pronounced with liver homogenates from 3-methylcholanthrene-treated rats than with those from phenobarbital-treated animals or untreated controls. The results suggest an important role for glucuronidation and sulfation in the inactivation and elimination of polycyclic aromatic hydrocarbons.  相似文献   

4.
Metabolic activation by cytochrome P-450 of glutamic acid pyrolysis products, 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-amino-dipyrido(1,2,-a:3',2'-d)imidazole (Glu-P-2), to mutagenic metabolites was studied using Salmonella typhimurium TA98 as a tester strain. Cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH were essential requirements for the activation of these compounds. Of the four forms of cytochrome P-450 examined, polychlorinated biphenyls (PCB) P-448 and 3-methylcholanthrene (MC) P-448 purified from liver microsomes of rats treated with a PCB mixture and MC, respectively, showed high activity in the activation of both Glu-P-1 and Glu-P-2. The presence of three metabolites from Glu-P-1 or Glu-P-2 was demonstrated by high performance liquid chromatographic (HPLC) analysis. Among the metabolites of Glu-P-1, two metabolites were mutagenic without any further enzymatic activation. In accordance with the results of a mutation assay, PCB P-448 also exhibited higher activity to form the major mutagenic metabolite of Glu-P-1. The major active metabolite of Glu-P-1 was characterized as N-hydroxy-Glu-P-1 by chemical analysis using oxidizing and reducing reagents and by mass spectrometry.  相似文献   

5.
Lipid extracts of Laurencia obtusa from eastern Sicily were examined by gas chromatography/mass spectrometry in order to investigate their composition in halogenated products and a marked variability has been found in specimens from different sites, while life history or season had a minor influence. In different habitats and types of substrate and flora, within a few kilometers distance, a completely different array of metabolites has been observed. Some of these compounds, namely obtusin, obtusadiol and obtusenyne, were reported in L. obtusa from other Mediterranean locations. A new compound, laurencienyne, is a major component in individual specimens collected at Castelluccio, whereas it is absent in specimens from other sites.  相似文献   

6.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

7.
Current research on dehydroepiandrosterone (DHEA) is limited due to lack of radiolabeled metabolites. We utilized pig liver microsomal (PLM) fractions to prepare [(3)H]-labeled 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA substrates from 50 microM [1,2,6,7-(3)H]DHEA (specific radioactivity 60-80 mCi/mmol). The metabolites were separated by preparative thin-layer chromatography (TLC) using ethyl acetate:hexane:glacial acetic acid (18:8:3 v:v:v) as the mobile phase, extracted with ethyl acetate, and dried under a stream of nitrogen. Metabolites assayed by TLC and gas chromatography-mass spectrometry were observed to be pure. In the presence of an reduced nicotinamide adenine dinucleotide phosphate (NADPH)-regenerating system initiated with 1 mM NADPH alone, 1 mg/ml PLM produced 7 alpha-OH-DHEA with minor amounts of 7-oxo-DHEA (68 and 14 nmol/2h/2 ml, respectively; 82% conversion), while in the presence of 1mM NADPH and 1 mM oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), more 7-oxo-DHEA than 7 alpha-OH-DHEA (58 and 11 nmol/2 ml/120 min, respectively; 69% conversion) was formed. When longer reaction times were used with NADPH and NADP(+), a mixture of 7 alpha-OH-DHEA, 7 beta-OH-DHEA, and 7-oxo-DHEA was produced (19,14, and 35 nmol/180 min/2 ml, respectively; 62% conversion). Using pig liver microsomes, the radiolabeled metabolites of DHEA can be prepared in stable, pure form at 10mM concentrations and >0.5 mCi/mmol levels of radioactivity for biochemical studies.  相似文献   

8.
The role of the target cell in determining the structures and the amounts of hydrocarbon-DNA adducts formed after hydrocarbon activation by an exogenous metabolic ativation system was investigated by exposing intact cells of the Chinese hamster lung cell line V79, V79 cell nuclei and calf thymus DNA to benzo[a]pyrene (B[a]P) in the presenceof a rat liver homogenate activation system (S9). The DNA was isolated, enzymatically degraded to deoxyribonucleosides and the B[a]P-deoxyribonucleoside adducts analyzed by high-performance liquid chromatography. Two major adducts were present in all samples; one formed by reaction of r-7, t-8-dihydroxy-t-9, 10-epoxy-7, 8, 9, 10-tetrahydro-B[a]P (anti-B[a]PDE) with the 2-amino group of deoxyguanosine, the other formed by reaction of a metabolite of 9-hydroxybenzo[a]pyrene (9-OH-B[a]P) with an unidentified deoxyribonucleoside. The ratios of the anti-B[a]PDE-DNA adduct to the 9-OH-B[a]P-DNA adduct were: calf thymus DNA, 3 to 1: DNA from V79 nuclei, 8 to 1; DNA from intact V79 cells, 11 to 1. Similar several-fold increases in the proportion of anti-B[a]PDE-DNA adducts in V79 cells over those in calf thymus DNA were observed for a dose range of 1–10 μg B[a]P per ml. The relative extent of binding of the activated metabolite of 9-OH-B[a]P to DNA was also much lower in intact V79 cells than in calf thymus DNA after exposure to 9-OH-B[a]P in the presence of the S9 activation system.These results demonstrate that the relative abilities of various reactive bbenzo[a]pyrene metabolites formed by an exogenous activation system to reach DNA differ substantially. Therefore, assessment of the biological activity of hydrocarbons in mutation assays using exogenous activation systems must take into account not only the amounts of different reactive hydrocarbon metabolites formed but also the relative abilities of these metabolites to reach the DNA of the target cell.  相似文献   

9.
The 7-methylbenzo[a]pyrene (7-MBaP) was incubated with liver microsomes of rats pretreated with polychlorinated biphenyls (Aroclor 1254) (PCBs). Metabolites of 7-MBaP were isolated by both reversed-phase and normal-phase high performance liquid chromatography (HPLC) and were characterized by nuclear magnetic resonance, UV-visible and mass spectral analyses. The predominant metabolite of 7-MBaP was found to be 3-hydroxy-7-methylbenzo[a]pyrene (3-hydroxy-7-MBaP). Other identified metabolites include 7-MBaP 4,5-, 7,8-, and 9,10-trans-dihydrodiols, 7-hydroxymethyl-BaP, 7-hydroxymethyl-BaP trans-9,10-dihydrodiol, 9-hydroxy-7-MBaP, 3-hydroxy-7-hydroxymethyl-BaP, 7-MBaP 1,6- and 3,6- quinones, and a hydroquinone which is also formed by further metabolism of the 3-hydroxy-7-MBaP. Comparative metabolic studies of 7-MBaP and BaP indicated that, relative to that of BaP, the methyl substituent of 7-MBaP slightly increases the formation of 3-hydroxy-7-MBaP and decreases the metabolism at other regions of the 7-MBaP molecule. The finding that a 7,8-dihydrodiol is a metabolite indicates that, like BaP, 7-MBaP may also be activated to the potentially reactive 7,8-dihydrodiol 9,10-epoxides although their formations are significantly reduced.  相似文献   

10.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) carcinogen benzo[a]pyrene (BaP) was studied using microsomes prepared from the skin of the mouse and rat. Topical application of the polychlorinated biphenyl (PCB) Aroclor 1254 or the PAH 3-methylcholanthrene (3-MC) to the skin of the C57BL/6N and DBA/2N mouse and the Sprague-Dawley rat caused statistically significant enhancement of cutaneous microsomal aryl hydrocarbon hydroxylase (AHH) activity in each animal. PCB was a more potent inducer of the enzyme than was 3-MC. BaP metabolism by skin microsomes from the same animals was assessed using high performance liquid chromatography (HPLC). The skin of untreated animals metabolized BaP into 9,10-, 7,8- and 4,5-dihydrodiols, phenols and quinones. Skin application of PCB caused greater than 16–18-fold enhancement of BaP metabolism in the C57BL/6N mouse and the rat and 2–5-fold enhancement in the DBA/2N mouse. Skin application of 3-MC enhanced BaP metabolism 2–8-fold in the C57BL/6N mouse and 5–10-fold in the rat and had no effect in the DBA/2N mouse. The formation of procarcinogenic metabolite BaP-7, 8-diol was greatly enhanced (4–12-fold) by treatment with the PCB and 3-MC in the tumor susceptible C57BL/6N mouse and in the tumor-resistant neonatal Sprague-Dawley rat. In contrast, the formation of BaP-7,8-diol was either slightly enhanced (2-fold) or unaffected by treatment with the PCB or 3-MC in the tumor-resistant DBA/2N mouse. Our data indicate that neither the patterns of metabolism nor the amount of BaP-7,8-diol formation in the skin are reliable predictors of tumor susceptibility to the PAH in rodent skin.  相似文献   

11.
Loss of tritium from specific positions in [3H,14C] aromatic hydrocarbons can elucidate their binding site(s) to DNA and RNA and indicate the mechanism of activation. Studies of tritium loss from [6-3H,14C]benzo[a]pyrene(B[a]P), [1,3-3H,14C]B[a]P, [1,3,6-3H,14C]B[a]P, [6,7-3H,14C]B[a]P, and [7-3H,14C]B[a]P were conducted in vitro using liver nuclei and microsomes from 3-methylcholanthrene-induced Sprague-Dawley rats and in vivo on the skin of Charles River CD-1 mice. The relative loss of tritium from [3H, 14C]B[a]P was measured after binding to skin DNA and RNA, to nuclear DNA, and to native and denatured calf thymus and rat liver DNA's and poly(G) by microsomal activation. In skin, nuclei, and microsomes plus native DNA, virtually all B[a]P binding occurred at positions 1,3 and 6; while with microsomes plus denatured DNA or poly(G), B[a]P showed no binding at the 6 position and a small amount at the 1 and 3 positions. In vivo and with nuclei, binding at the 6 position predominated. Little loss of tritium from the 7 position was seen; this was expected because binding at this position is not thought to occur. This confirms the interpretation of loss of tritium as an indication of binding at a given position. These results demonstrate that the use of microsomes to activate B[a]P is not a valid model system for delineating the in vivo mechanism of B[a]P activation, and support previous evidence for one-electron oxidation as the mechanism of activation of hydrocarbons in binding to nucleic acids.  相似文献   

12.
In order to investigate the influence of flow and, thus, substrate delivery, on the ability of lung to metabolize foreign compounds, the disappearance of circulating [3H]benzo[a]pyrene ([3H]B[a]P) and the appearance of B[a]P metabolites was monitored in isolated rat lungs from control and 3-methylcholanthrene (3-MC) pretreated rats perfused at low (10 ml/min) and high (45 ml/min) flows. Increasing the flow or 3-MC pretreatment hastened the disappearance of B[a]P from the perfusion medium reservoir and increased the rate of appearance of total metabolites. However, these manipulations affected the appearance of individual metabolites in the medium in different ways. For example, in lungs from control rats the rate of appearance of 7,8-dihydrodiol (7,8-dihydroxy-7,8-dihydro-B[a]P) (7,8-DHD) in the perfusion medium was markedly increased by increasing flow while that of B[a]P-1,6-quinone was minimally affected. In addition, increasing flow increased the concentration of some B[a]P metabolites, such as 4,5-dihydrodiol (4,5-dihydroxy-4,5-dihydro-B[a]P) (4,5-DHD) in the lung tissue of control rats at the end of the perfusion period, but did not effect much change in the concentration of these metabolites in lungs from 3-MC-pretreated rats. The results show that flow, as well as 3-MC pretreatment, may alter the rate at which metabolism of foreign compounds occurs and the temporal profile of metabolites produced by the intact lung.  相似文献   

13.
Ceramides (CERs) in the upper layer of the skin, the stratum corneum (SC), play a key role in the skin barrier function. In human SC, the literature currently reports 11 CER subclasses that have been identified. In this paper, a novel quick and robust LC/MS method is presented that allows the separation and analysis of all known human SC CER subclasses using only limited sample preparation. Besides all 11 known and identified subclasses, a 3D multi-mass chromatogram shows the presence of other lipid subclasses. Using LC/MS/MS with an ion trap (IT) system, a Fourier transform-ion cyclotron resonance system, and a triple quadrupole system, we were able to identify one of these lipid subclasses as a new CER subclass: the ester-linked ω-hydroxy fatty acid with a dihydrosphingosine base (CER [EOdS]). Besides the identification of a new CER subclass, this paper also describes the applicability and robustness of the developed LC/MS method by analyzing three (biological) SC samples: SC from human dermatomed skin, human SC obtained by tape stripping, and SC from full-thickness skin explants. All three biological samples showed all known CER subclasses and slight differences were observed in CER profile.  相似文献   

14.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

15.
Benzo[a]pyrene (BP) metabolism and the conjugation and DNA-binding of BP metabolites, was studied using isolated hepatocytes from mice maintained on a diet containing 2(3)-tert-butyl-4-hydroxyanisole (BHA) (7.5 g/kg food) to discover the mechanisms involved in the anticarcinogenic effects of this antioxidant. The antioxidant feeding produced: (a) profound differences in the BP metabolite pattern, (b) no increase in the levels of either the glucuronic acid, the sulfate or the glutathione conjugates and (c) a marked decrease in the level of BP metabolites bound to intracellular DNA. Therefore, the inhibition of DNA-binding observed after administration of BHA, may be due to the change in BP metabolism rather than to an increase in the conjugation of reactive metabolites.  相似文献   

16.
A gas chromatographic-mass spectrometric method has been developed for the determination of N-7-[2H3]methyl guanine in urine in the presence of large natural levels of N-7-methyl guanine. Urine is fractionated on heptanesulfonic acid-treated C-18 Sep-pak cartridges, followed by derivatization to give a volatile N-heptafluorobutyryl-O6-2,3,4,5, 6-pentafluorobenzyl derivative which is separated on an SE52 fused silica capillary column. Using N-7-ethyl guanine as an internal standard, the total amount of N-7-methyl guanine is determined by gas chromatography-flame ionization detection. The percentage of N-7-[2H3]methyl guanine is then measured by gas chromatography-mass spectrometry, enabling the amount of deuterated base to be determined. Preliminary experiments with [2H3]methyl methanesulfonate in rats showed measurable excretion of N-7-[2H3]methyl guanine. 4-(Di[2H3]methylamino)antipyrine alone gave no detectable amount of alkylated base, but coadministration of nitrite resulted in excretion of deuterated N-7-methyl guanine.  相似文献   

17.
The chemical and enzymatic oxidations of 6-, 7- and 10-methylbenzo[a]pyrenes, 6,10- and 7,10-dimethylbenzo[a]pyrenes and benzo[a]pyrene (BP) itself have been investigated to study the effects of alkyl substitution on the pathways of oxidation. The chemical oxidizing systems employed were Fenton's reagent (FeSO4H2O2); trifluoroacetic acid-hydrogen peroxide (TFA/H2O2); thallium tristrifluoracetate in trifluoroacetic acid (TTFA/TFA) and H2SO4. The enzymatic systems were horseradish peroxidase (HRP/H2O2) and rat liver microsomes. The oxidations were investigated by electron paramagnetic resonance (EPR) spectroscopy to detect radical intermediates and by high performance liquid chromatography (HPLC) to separate the products. All the compounds studied produced radicals, identified as cationic species, in both H2SO4 and TTFA/TFA. In addition the 7-methyl-, 10-methyl- and 7,10-dimethyl-BP's produced 6-oxy radicals in some or all of the remaining oxidizing systems. Both chemically and enzymatically these same three compounds were observed to produce quinones as stable products. Microsomal oxidations gave the broadest range of products exhibiting HPLC peaks in the diol, quinone and phenol regions of the chromatograms, however, there were considerable differences between products from the individual derivatives and those from the parent molecule. 6-Methyl and 6,10-dimethyl-BP's showed no evidence of oxy radical intermediates or quinones under any set of conditions, the 6-substituent effectively blocking this oxidation pathway. The observations are consistent with the expected effects of alkyl substituents at particular positions and indicate that studies such as this one are potentially useful in better understanding oxidation and possible activation pathways of polycyclic aromatic hydrocarbons.  相似文献   

18.
液相色谱/离子阱质谱法研究何首乌中糖苷类化合物   总被引:1,自引:0,他引:1  
采用液相色谱/离子阱质谱(HPLC/IT-MS)联用技术研究何首乌中糖苷类化合物,并对大黄素甲醚糖苷和大黄素糖苷的分子离子或准分子离子的离子化机理进行探讨。实验采用反相C18色谱柱,二元线性梯度洗脱,分离出12个主要成分。利用质谱的诱导碰撞解离技术获得碎片裂解信息,结合文献鉴定出9种糖苷的化学结构,其中顺式-2,3,5,4'-四羟基二苯乙烯-2-O-β-D-毗喃葡萄糖苷、决明酮-8—O-(6'-O-乙酰基)-β—D-吡喃葡萄糖苷和大黄素甲醚-8-O-(6'-O-乙酰基)-β-D-吡喃葡萄糖苷为首次鉴定。  相似文献   

19.
The metabolism of N-methyl substituted 7H-dibenzo[c,g]carbazole (N-Me DBC) was investigated in vitro using liver microsomes from 3-methylcholanthrene (MC)-, benzo[c]carbazole (BC) and Arochlor-pretreated mice and rats. N-Me DBC is a potent sarcomatogen devoid of hepatotoxicity and liver carcinogenic activity. The ethyl acetate-extractable metabolites were separated by high performance liquid chromatography (HPLC) and most of them were identified by proton magnetic resonance (PMR), mass spectrometry (MS) and comparison with synthetically prepared specimens. Mouse and rat microsomes gave rise to the same metabolites. The major metabolites were 5-OH-N-Me DBC (50%), N-hydroxymethyl (HMe) DBC (25-30%) and 3-OH-N-Me DBC (10%). Addition of 1,1,1-trichloropropene-2,3-oxide (TCPO) to the standard incubation medium permitted the identification of two dihydrodiols among the minor metabolites. No metabolite of DBC was observed after incubation of N-Me DBC, or its major metabolite N-HMe DBC, with either mouse or rat microsomes, but the possibility of a slight demethylation cannot be totally excluded. The lack of biotransformation at the nitrogen atom site may explain the lack of hepatotoxicity and liver carcinogenic activity of N-Me DBC. The modulation of metabolism by epoxide hydrolase, cytosol and glutathione was also investigated. The results are discussed in the light of data previously obtained with hepatotoxic and hepatocarcinogenic DBC.  相似文献   

20.
7H-Dibenzo[c,g]carbazole, DBC, is a potent environmental liver carcinogen. Liver DNA from mice treated with DBC exhibited seven distinct DBC-DNA adducts as detected by 32P-postlabeling using multidimensional TLC. To improve quantitation and chemically characterize the adducts, DNA samples were hydrlyzed, 32P-postlabeled and the adducts were separated from the unadducted normal nucleotides on TLC using a D1 solvent, 0.65 M sodium phosphate (pH 6.8). Adducts were eluted from the TLC plates with 4.0 M pyridinium formate, concentrated, resuspended in 50% aqueous methanol and injected onto the HPLC; five individual adduct peaks were resolved and collected by this method. This approach will prove useful to decrease analysis time and improve chemical characterization of tightly clustered DNA adducts generated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号