首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Capsid functions of inactivated human picornaviruses and feline calicivirus   总被引:1,自引:0,他引:1  
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.  相似文献   

2.
Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus   总被引:10,自引:6,他引:4       下载免费PDF全文
Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5°C than at 15°C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15°C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5°C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States.  相似文献   

3.
Infectivity of RNA from Inactivated Poliovirus   总被引:2,自引:1,他引:1       下载免费PDF全文
During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72°C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22°C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.  相似文献   

4.
5.
Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.  相似文献   

6.
Human noroviruses (HNoV) and hepatitis A virus (HAV) have been implicated in outbreaks linked to the consumption of presliced ready-to-eat deli meats. The objectives of this research were to determine the thermal inactivation kinetics of HNoV surrogates (murine norovirus 1 [MNV-1] and feline calicivirus strain F9 [FCV-F9]) and HAV in turkey deli meat, compare first-order and Weibull models to describe the data, and calculate Arrhenius activation energy values for each model. The D (decimal reduction time) values in the temperature range of 50 to 72°C calculated from the first-order model were 0.1 ± 0.0 to 9.9 ± 3.9 min for FCV-F9, 0.2 ± 0.0 to 21.0 ± 0.8 min for MNV-1, and 1.0 ± 0.1 to 42.0 ± 5.6 min for HAV. Using the Weibull model, the tD = 1 (time to destroy 1 log) values for FCV-F9, MNV-1, and HAV at the same temperatures ranged from 0.1 ± 0.0 to 11.9 ± 5.1 min, from 0.3 ± 0.1 to 17.8 ± 1.8 min, and from 0.6 ± 0.3 to 25.9 ± 3.7 min, respectively. The z (thermal resistance) values for FCV-F9, MNV-1, and HAV were 11.3 ± 2.1°C, 11.0 ± 1.6°C, and 13.4 ± 2.6°C, respectively, using the Weibull model. The z values using the first-order model were 11.9 ± 1.0°C, 10.9 ± 1.3°C, and 12.8 ± 1.7°C for FCV-F9, MNV-1, and HAV, respectively. For the Weibull model, estimated activation energies for FCV-F9, MNV-1, and HAV were 214 ± 28, 242 ± 36, and 154 ± 19 kJ/mole, respectively, while the calculated activation energies for the first-order model were 181 ± 16, 196 ± 5, and 167 ± 9 kJ/mole, respectively. Precise information on the thermal inactivation of HNoV surrogates and HAV in turkey deli meat was generated. This provided calculations of parameters for more-reliable thermal processes to inactivate viruses in contaminated presliced ready-to-eat deli meats and thus to reduce the risk of foodborne illness outbreaks.  相似文献   

7.
Hepatitis A virus (HAV) is a food-borne enteric virus responsible for outbreaks of hepatitis associated with shellfish consumption. The objectives of this study were to determine the thermal inactivation behavior of HAV in blue mussels, to compare the first-order and Weibull models to describe the data, to calculate Arrhenius activation energy for each model, and to evaluate model efficiency by using selected statistical criteria. The times required to reduce the population by 1 log cycle (D-values) calculated from the first-order model (50 to 72°C) ranged from 1.07 to 54.17 min for HAV. Using the Weibull model, the times required to destroy 1 log unit (tD = 1) of HAV at the same temperatures were 1.57 to 37.91 min. At 72°C, the treatment times required to achieve a 6-log reduction were 7.49 min for the first-order model and 8.47 min for the Weibull model. The z-values (changes in temperature required for a 90% change in the log D-values) calculated for HAV were 15.88 ± 3.97°C (R2, 0.94) with the Weibull model and 12.97 ± 0.59°C (R2, 0.93) with the first-order model. The calculated activation energies for the first-order model and the Weibull model were 165 and 153 kJ/mol, respectively. The results revealed that the Weibull model was more appropriate for representing the thermal inactivation behavior of HAV in blue mussels. Correct understanding of the thermal inactivation behavior of HAV could allow precise determination of the thermal process conditions to prevent food-borne viral outbreaks associated with the consumption of contaminated mussels.  相似文献   

8.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.  相似文献   

9.
Viricidal Effects of Lactobacillus and Yeast Fermentation   总被引:1,自引:1,他引:0       下载免费PDF全文
The survival of selected viruses in Lactobacillus- and yeast-fermented edible waste material was studied to determine the feasibility of using this material as a livestock feed ingredient. Five viruses, including Newcastle disease virus, infectious canine hepatitis virus, a porcine picornavirus, frog virus 3, and bovine virus diarrhea, were inoculated into a mixture of ground food waste (collected from a school lunch program) containing Lactobacillus acidophilus. Mixtures were incubated at 20, 30, and 40°C for 216 h. In a second trial, four viruses, including Newcastle disease virus, infectious canine hepatitis virus, frog virus 3, and a porcine picornavirus, were inoculated into similar edible waste material containing Saccharomyces cerevisiae. Mixtures were incubated at 20 and 30°C for 216 h. Samples were obtained daily for quantitative (trial 1) and qualitative (trial 2) virus isolation. Temperature, pH, and redox potential were monitored. Controlled pH and temperature studies were also done and compared with the inactivation rates in the fermentation processes. In trial 1 (Lactobacillus fermentation), infectious canine hepatitis virus survived the entire test period in the fermentation process but was inactivated below pH 4.5 in the controlled studies. Newcastle disease virus was inactivated by day 8 in the fermentation process and appeared to be primarily heat sensitive and secondarily pH sensitive in the controlled studies. The porcine picornavirus survived the fermentation process for 8 days at 20°C but was inactivated more rapidly at 30 and 40°C. The controlled studies verified these findings. Frog virus 3 was inactivated by day 3 in the fermentation process and appeared to be sensitive to low pH in the controlled studies. Bovine virus diarrhea was rapidly inactivated in the fermentation process (less than 2 h) and was pH and temperature sensitive. In trial 2 (yeast fermentation), infectious hepatitis virus survived the entire test period in the fermentation process. Newcastle disease virus was inactivated by day 7 at 20°C and day 6 at 30°C. The porcine picornavirus was inactivated by day 7 at 30°C but survived the entire test period at 20°C. Frog virus 3 was inactivated by day 3 at 20°C and day 2 at 30°C.  相似文献   

10.
Inactivation of a Norovirus by High-Pressure Processing   总被引:2,自引:1,他引:1       下载免费PDF全文
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

11.
Millions of people suffer from foodborne diseases throughout the world every year, and the importance of food safety has grown worldwide in recent years. The aim of this study was to investigate the survival of hepatitis A virus (HAV) and viral surrogates of human norovirus (HuNoV) (bacteriophage MS2 and murine norovirus [MNV]) in food over time. HAV, MNV, and MS2 were inoculated onto either the digestive gland of oysters or the surface of fresh peppers, and their survival on these food matrices was measured under various temperature (4°C, 15°C, 25°C, and 40°C) and relative humidity (RH) (50% and 70%) conditions. Inoculated viruses were recovered from food samples and quantified by a plaque assay at predetermined time points over 2 weeks (0, 1, 3, 7, 10, and 14 days). Virus survival was influenced primarily by temperature. On peppers at 40°C and at 50% RH, >4- and 6-log reductions of MNV and HAV, respectively, occurred within 1 day. All three viruses survived better on oysters. In addition, HAV survived better at 70% RH than at 50% RH. The survival data for HAV, MS2, and MNV were fit to three different mathematical models (linear, Weibull, and biphasic models). Among them, the biphasic model was optimum in terms of goodness of fit. The results of this study suggest that major foodborne viruses such as HAV and HuNoV can survive over prolonged periods of time with a limited reduction in numbers. Because a persistence of foodborne virus on contaminated foods was observed, precautionary preventive measures should be performed.  相似文献   

12.
Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5 degrees C than at 15 degrees C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15 degrees C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5 degrees C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States.  相似文献   

13.
High-Pressure Inactivation of Hepatitis A Virus within Oysters   总被引:3,自引:1,他引:2       下载免费PDF全文
Previous results demonstrated that hepatitis A virus (HAV) could be inactivated by high hydrostatic pressure (HHP) (D. H. Kingsley, D. Hoover, E. Papafragkou, and G. P. Richards, J. Food Prot. 65:1605-1609, 2002); however, direct evaluation of HAV inactivation within contaminated oysters was not performed. In this study, we report confirmation that HAV within contaminated shellfish is inactivated by HHP. Shellfish were initially contaminated with HAV by using a flowthrough system. PFU reductions of >1, >2, and >3 log10 were observed for 1-min treatments at 350, 375, and 400 megapascals, respectively, within a temperature range of 8.7 to 10.3°C. Bioconcentration of nearly 6 log10 PFU of HAV per oyster was achieved under simulated natural conditions. These results suggest that HHP treatment of raw shellfish will be a viable strategy for the reduction of infectious HAV.  相似文献   

14.
1. The rate of inactivation of an anti-coli phage by filtrates of cultures of the homologous bacteria has been studied. 2. The inactivation rate at 37°C. is proportional to phage concentration and filtrate concentration. 3. At 0°C. the rate of phage inactivation becomes proportional to the square root of the filtrate concentration. 4. A reaction scheme to account for these observations is suggested and discussed. 5. This coli-phage is also inactivated by relatively large concentrations of soluble starch, inulin, gum arabic, and acetylated gum arabic. 6. The inactivation is markedly influenced by salt concentration, being rapid at moderate salt concentrations and slow at high or extremely low salt concentrations. 7. The inactivated phage cannot be regenerated by high salt concentrations, or by soaps.  相似文献   

15.
Human norovirus (huNoV) and hepatitis A virus (HAV) have been involved in several produce-associated outbreaks and identified as major food-borne viral etiologies. In this study, the survival of huNoV surrogates (murine norovirus [MNV] and Tulane virus [TV]) and HAV was investigated on alfalfa seeds during storage and postgermination. Alfalfa seeds were inoculated with MNV, TV, or HAV with titers of 6.46 ± 0.06 log PFU/g, 3.87 ± 0.38 log PFU/g, or 7.01 ± 0.07 log 50% tissue culture infectious doses (TCID50)/g, respectively. Inoculated seeds were stored for up to 50 days at 22°C and sampled during that storage period on days 0, 2, 5, 10, and 15. Following storage, virus presence was monitored over a 1-week germination period. Viruses remained infectious after 50 days, with titers of 1.61 ± 0.19 log PFU/g, 0.85 ± 0.21 log PFU/g, and 3.43 ± 0.21 log TCID50/g for MNV, TV, and HAV, respectively. HAV demonstrated greater persistence than MNV and TV, without a statistically significant reduction over 20 days (<1 log TCID50/g); however, relatively high levels of genomic copies of all viruses persisted over the testing time period. Low titers of viruses were found on sprouts and were located in all tissues as well as in sprout-spent water sampled on days 1, 3, and 6 following seed planting. Results revealed the persistence of viruses in seeds for a prolonged period of time, and perhaps of greater importance these data suggest the ease of which virus may transfer from seeds to sprouts and spent water during germination. These findings highlight the importance of sanitation and prevention procedures before and during germination.  相似文献   

16.
Inactivation of Caliciviruses   总被引:10,自引:7,他引:3       下载免费PDF全文
The viruses most commonly associated with food- and waterborne outbreaks of gastroenteritis are the noroviruses. The lack of a culture method for noroviruses warrants the use of cultivable model viruses to gain more insight on their transmission routes and inactivation methods. We studied the inactivation of the reported enteric canine calicivirus no. 48 (CaCV) and the respiratory feline calicivirus F9 (FeCV) and correlated inactivation to reduction in PCR units of FeCV, CaCV, and a norovirus. Inactivation of suspended viruses was temperature and time dependent in the range from 0 to 100°C. UV-B radiation from 0 to 150 mJ/cm2 caused dose-dependent inactivation, with a 3 D (D = 1 log10) reduction in infectivity at 34 mJ/cm2 for both viruses. Inactivation by 70% ethanol was inefficient, with only 3 D reduction after 30 min. Sodium hypochlorite solutions were only effective at >300 ppm. FeCV showed a higher stability at pH <3 and pH >7 than CaCV. For all treatments, detection of viral RNA underestimated the reduction in viral infectivity. Norovirus was never more sensitive than the animal caliciviruses and profoundly more resistant to low and high pH. Overall, both animal viruses showed similar inactivation profiles when exposed to heat or UV-B radiation or when incubated in ethanol or hypochlorite. The low stability of CaCV at low pH suggests that this is not a typical enteric (calici-) virus. The incomplete inactivation by ethanol and the high hypochlorite concentration needed for sufficient virus inactivation point to a concern for decontamination of fomites and surfaces contaminated with noroviruses and virus-safe water.  相似文献   

17.
Human norovirus (HuNoV) is the leading cause of foodborne illnesses, with an increasing number of outbreaks associated with leafy greens. Because HuNoV cannot be routinely cultured, culturable feline calicivirus (FCV), murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV) have been used as surrogates. These viruses are generated in different cell lines as infected cell lysates, which may differentially affect their stability. Our objective was to uniformly compare the survival of these viruses on postharvest lettuce while evaluating the effects of cell lysates on their survival. Viruses were semipurified from cell lysates by ultrafiltration or ultracentrifugation followed by resuspension in sterile water. Virus survival was examined before and after semipurification: in suspension at room temperature (RT) until day 28 and on lettuce leaves stored at RT for 3 days or at 4°C for 7 and 14 days. In suspension, both methods significantly enhanced the survival of all viruses. On lettuce, the survival of MNV in cell lysates was similar to that in water, under all storage conditions. In contrast, the survival of FCV, SaV, and TV was differentially enhanced, under different storage conditions, by removing cell lysates. Following semipurification, viruses showed similar persistence to each other on lettuce stored under all conditions, with the exception of ultracentrifugation-purified FCV, which showed a higher inactivation rate than MNV at 4°C for 14 days. In conclusion, the presence of cell lysates in viral suspensions underestimated the survivability of these surrogate viruses, while viral semipurification revealed similar survivabilities on postharvest lettuce leaves.  相似文献   

18.
Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom (EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5°C were >0.77 to <1.53 mg/liter × min and >0.80 to <1.59 mg/liter × min for pH 6 and 8, respectively. For 15°C AD40 experiments, >0.49 to <0.74 mg/liter × min and <0.12 mg/liter × min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV Ct99.99% ranges for 5°C experiments were >20.20 to <30.30 mg/liter × min and >0.68 mg/liter × min for pH 6 and 8, respectively. For 15°C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter × min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15°C than at 5°C. Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experiments and from EFH model application.  相似文献   

19.
Pima County, Ariz., is currently investigating the potential benefits of land application of sewage sludge. To assess risks associated with the presence of pathogenic enteric viruses present in the sludge, laboratory studies were conducted to measure the inactivation rate (k = log10 reduction per day) of poliovirus type 1 and bacteriophages MS2 and PRD-1 in two sludge-amended desert agricultural soils (Brazito Sandy Loam and Pima Clay Loam). Under constant moisture (approximately -0.05 × 105 Pa for both soils) and temperatures of 15, 27, and 40°C, the main factors controlling the inactivation of these viruses were soil temperature and texture. As the temperature increased from 15 to 40°C, the inactivation rate increased significantly for poliovirus and MS2, whereas, for PRD-1, a significant increase in the inactivation rate was observed only at 40°C. Clay loam soils afforded more protection to all three viruses than sandy soils. At 15°C, the inactivation rate for MS2 ranged from 0.366 to 0.394 log10 reduction per day in clay loam and sandy loam soils, respectively. At 27°C, this rate increased to 0.629 log10 reduction per day in clay loam soil and to 0.652 in sandy loam soil. A similar trend was observed for poliovirus at 15°C (k = 0.064 log10 reduction per day, clay loam; k = 0.095 log10 reduction per day, sandy loam) and 27°C (k = 0.133 log10 reduction per day, clay loam; k = 0.154 log10 reduction per day, sandy loam). Neither MS2 nor poliovirus was recovered after 24 h at 40°C. No reduction of PRD-1 was observed after 28 days at 15°C and after 16 days at 27°C. At 40°C, the inactivation rates were 0.208 log10 reduction per day in amended clay loam soil and 0.282 log10 reduction per day in sandy loam soil. Evaporation to less than 5% soil moisture completely inactivated all three viruses within 7 days at 15°C, within 3 days at 27°C, and within 2 days at 40°C regardless of soil type. This suggests that a combination of high soil temperature and rapid loss of soil moisture will significantly reduce risks caused by viruses in sludge.  相似文献   

20.
Translational thermotolerance in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号