首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our previous studies on simultaneous inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) and pentose phosphate activity by 6-aminonicotinamide (6-AN) have been shown to induce oxidative stress mediated selective radiosensitization in wide range of human malignant cells. However, the mechanism of radiosensitization induced by this combination (2-DG+6-AN) is not completely understood. Since activation of apoptotic signal regulating kinase (ASK1) and subsequent apoptosis are implicated in oxidative stress response, the role of ASK1 activation in radiosensitization by this combination was investigated in the present study. Our results demonstrated that redox alterations induced by this combination activated ASK1 and subsequent apoptosis during radiosensitization of head and neck carcinoma cells (KB). In addition, mRNA and protein expression of thioredoxin and thioredoxin reductase decreased significantly under similar treatment conditions. Further, the downstream targets such as JNK and p38MAPK were also activated by this combination, and their pharmacological inhibition by SP600125 and SB201291 respectively resulted in suppression of 2-DG+6-AN mediated apoptosis in irradiated KB cells. Interestingly, the activation of ASK1 was mediated by hydrogen peroxide rather than superoxide anions as PEG-catalase but not PEG-SOD suppressed its activation. Our observations clearly suggest that redox alterations by inhibition of glucose metabolism serves as a molecular switch that activate ASK1-JNK/p38MAPK signaling in malignant cells during radiosensitization by 2-DG+6-AN. The present study emphasizes the importance of redox alterations in determining radiosensitivity of tumor cells that may greatly influence the outcome of radiation therapy.  相似文献   

2.
《Free radical research》2013,47(12):1446-1457
Enhanced level of nuclear erythroid-related factor-2 (Nrf2) has been associated with cancer chemo/radioresistance. Therefore, the role of Nrf2 in radiosensitization of malignant cells induced by a combination of 2-deoxy-D-Glucose (2-DG) and 6-aminonicotinamide (6-AN) was investigated. Two established human malignant cells lines namely KB (head and neck squamous carcinoma) and BMG-1 (cerebral glioma) were used. Following treatment with a combination of 2-DG (5 mM) and 6-AN (5 μM), irradiated (2Gy) KB and BMG-1 cells were assessed for protein level of Nrf2, Keap1 and γ-glutamylcysteine synthetase (γ-GCS) by western blotting and mRNA expression of γ-GCS, glutathione reductase (GR) and glutathione peroxidase (GPx1) by RT-PCR at 24 hours post treatment. A significant decrease in the level of Nrf2 with a concomitant increase in Keap1 was observed in both the irradiated malignant cells at 24 hours following treatment with combination (2-DG + 6-AN). Down regulation of γ-GCS, GR and GPx1 at 24 hours following treatment with combination (2-DG + 6-AN) resulted in abrogation of glutathione (GSH)-mediated defense in both the irradiated malignant cells. Eventual accumulation of ROS led to radiosensitization of both the malignant cells. These results indicate that deregulated Nrf2-Keap1 signalling leads to the radiosensitization of malignant cells due to abrogated glutathione defense. Metabolic modification-mediated down regulation of Nfr2 and its downstream signalling may have a potential of improving tumour radiotherapy.  相似文献   

3.
Intracellular Na+ accumulation has been shown to contribute to hepatocyte death caused by anoxia or oxidative stress. In this study we have investigated the mechanism by which Na+ overload can contribute to the development of cytotoxicity. ATP depletion in isolated hepatocytes exposed to menadione-induced oxidative stress or to KCN was followed by Na+ accumulation, loss of intracellular K+, and cell swelling. Hepatocyte swelling occurred in two phases: a small amplitude swelling (about 15% of the initial size) with preservation of plasma membrane integrity and a terminal large amplitude swelling associated with cell death. Inhibition of Na+ accumulation by the use of a Na+-free medium prevented K+ loss, cell swelling, and cytotoxicity. Conversely, blocking K+ efflux by the addition of BaCl2 did not influence Na+ increase and small amplitude swelling, but greatly stimulated large amplitude swelling and cytotoxicity. Menadione or KCN killing of hepatocytes was also enhanced by inducing cell swelling in an hypotonic medium. However, increasing the osmolarity of the incubation medium did not protect against large amplitude swelling and cytotoxicity, since stimulated Na+ accumulation and K+ efflux. Altogether these results indicate that the impairment of volume regulation in response to the osmotic load caused by Na+ accumulation is critical for the development of cell necrosis induced by mitochondrial inhibition or oxidative stress.  相似文献   

4.
Wang Q  Liang B  Shirwany NA  Zou MH 《PloS one》2011,6(2):e17234
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 μM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.  相似文献   

5.
Overexpression of the tumor suppressor gene, wild-type p53 (wtp53), using adenoviral vectors (Adp53) has been suggested to kill cancer cells by hydroperoxide-mediated oxidative stress [1,2] and nutrient distress induced by the glucose analog, 2-deoxyglucose (2DG), has been suggested to enhance tumor cell killing by agents that induce oxidative stress via disrupting hydroperoxide metabolism [3,4]. In the current study clonogenic cell killing of PC-3 and DU-145 human prostate cancer cells (lacking functional p53) mediated by 4 h exposure to 50 plaque forming units (pfus)/cell of Adp53 (that caused the enforced overexpression of wtp53) was significantly enhanced by treatment with 2DG. Accumulation of glutathione disulfide was found to be significantly greater in both cell lines treated with 2DG+Adp53 and both cell lines treated with 2DG+Adp53 showed a approximately 2-fold increases in dihydroethidine (DHE) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CDCFH(2)) oxidation, indicative of increased steady-state levels of O(2)(.-) and hydroperoxides, respectively. Finally, overexpression of catalase or glutathione peroxidase using adenoviral vectors partially, but significantly, protected DU-145 cells from the toxicity induced by 2DG+Adp53 treatment. These results show that treatment of human prostate cancer cells with the combination of 2DG (a nutrient stress) and overexpression of the tumor suppressor gene, wtp53, enhances clonogenic cell killing by a mechanism that involves oxidative stress as well as allowing for the speculation that inhibitors of glucose and hydroperoxide metabolism can be used in combination with Adp53 gene therapy to enhance therapeutic responses.  相似文献   

6.
This study was designed to assess the effect of 50 Hz electromagnetic fields (EMFs) on hippocampal cell cultures in the presence or absence of either sodium nitroprusside (SNP, a NO donor) or Fe2+ induced oxidative stress. One week old cultured rat hippocampal cells were exposed to either intermittent EMFs (IEMFs, 50 Hz, 0-5 mT, 1 min ON/OFF cycles, repeated 10 times every 2 h, 6 times/day during 48 h) or continuous EMFs (CEMFs, 50 Hz, 0-5 mT for 48 h). In a second set of experiments, the effect on such EMFs applied in combination with oxidative stress induced by 0.5 microM Fe2+ or SNP was estimated. At the end of both sets of experiments, cell mortality was assessed by lactate dehydrogenase measurements (LDH). Neither type of exposure to EMFs was observed to modify the basal rate of cell mortality. The exposure to CEMFs in presence of either NO or Fe2+ did not induce any significant increase in cell death. However, when cells were exposed to EMFs in the presence of NO, we observed a significant increase in cell death of 11 and 23% (P<0.001) at 2.5 and 5 mT, respectively. This effect had some specificity because IEMFs did not modify the effect of Fe2+ on cell mortality. Although the effects of IEMFs reported in this study were only observed at very high intensities, our model may prove valuable in trying to identify one cellular target of EMFs.  相似文献   

7.
Bovine interferon-tau (IFN-tau), the anti-luteolytic factor secreted by conceptuses of pecoran ruminants, is a product of autosomal genes, yet in vitro produced (IVP) female expanded blastocysts (EB) secrete about twice as much IFN-tau as males. Two possible explanations have been tested here. One is that embryos of one sex are differentially susceptible to oxidative stress. The second is that female EB produce more IFN-tau because pentose-phosphate pathway (PPP) activity is elevated as a result of delayed X-chromosome inactivation. IVP bovine zygotes were cultured to the 8-cell stage and placed under conditions designed either to promote oxidative stress (+/-H2O2; 20 vs. 5% O2), or to inhibit glucose 6-phosphate dehydrogenase (G6PDH) activity (addition of dehydroepiandrosterone, DHEA or 6-aminonicotinamide, 6-AN to the medium). At day 8, blastocysts were cultured individually for a further 48 hr to assess IFN-tau production, and embryo sex determined retrospectively. Blastocyst numbers were reduced (P < 0.05) and their continued development impaired (P < 0.05) in presence of H2O2 (200 microM) and 20% O2, but neither IFN-tau production nor sexually dimorphic expression of IFN-tau were affected. IFN-tau production was reduced, particularly in females (P < 0.05), and sexual dimorphic differences in production were lost in the presence of both DHEA (100 microM) and 6-AN (1 microM). In the case of 6-AN, these effects were achieved without a significant decline in blastocyst developmental progression, quality, or cell number. The data suggest that the higher production of IFN-tau by female EB is an indirect outcome of the increased activity of the oxidative arm of the PPP pathway.  相似文献   

8.

Background

Targeting multiple aspects of cellular metabolism, such as both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), has the potential to improve cancer therapeutics. Berberine (BBR), a widely used traditional Chinese medicine, exerts its antitumor effects by inhibiting OXPHOS. 2-Deoxy-d-glucose (2-DG) targets aerobic glycolysis and demonstrates potential anticancer effects in the clinic. We hypothesized that BBR in combination with 2-DG would be more efficient than either agent alone against cancer cell growth.

Methods

The effects of BBR and 2-DG on cancer cell growth were evaluated using the Sulforhodamine B (SRB) method. Cell death was detected with the PI uptake assay, and Western blot, Q-PCR and luciferase reporter assays were used for signaling pathway detection. An adenovirus system was used for gene overexpression.

Results

BBR combined with 2-DG synergistically enhanced the growth inhibition of cancer cells in vitro. Further mechanistic studies showed that the combination drastically enhanced ATP depletion and strongly disrupted the unfolded protein response (UPR). Overexpressing GRP78 partially prevented the cancer cell inhibition induced by both compounds.

Conclusions

Here, we report for the first time that BBR and 2-DG have a synergistic effect on cancer cell growth inhibition related to ATP energy depletion and disruption of UPR.

General significance

Our results propose the potential use of BBR and 2-DG in combination as an anticancer treatment, reinforcing the hypothesis that targeting both aerobic glycolysis and OXPHOS provides more effective cancer therapy and highlighting the important role of UPR in the process.  相似文献   

9.
10.
A major feature of Alzheimer's disease is the deposition of the amyloid beta peptide (Abeta) in the brain by mechanisms which remain unclear. One hypothesis suggests that oxidative stress and Abeta aggregation are interrelated processes. Protein kinase C, a major neuronal regulatory protein is activated after oxidative stress and is also altered in the Alzheimer's disease brain. Therefore, we examined the effects of Abeta(1-40) peptide on the protein kinase C cascade and cell death in primary neuronal cultures following anoxic conditions. Treatment with Abeta(1-40) for 48 h caused a significant increase in the content and activity of Ca2+ dependent and Ca2+ independent protein kinase C isoforms. By 72 h various protein kinase C isoforms were down-regulated. Following 90 min anoxia and 6 h normoxia, a decrease in protein kinase C isoforms was noticed, independent of Abeta(1-40) treatment. A combination of Abeta(1-40) and 30-min anoxia enhanced cytotoxicity as noticed by a marked loss in the mitochondrial ability to convert 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and by enhanced 4',6-diamidino-2-phenylindole nuclear staining. Phosphorylation of two downstream protein kinase C substrates of apparent molecular mass 80 and 43 kDa, tentatively identified as the myristoyl alanine-rich C-kinase substrate (MARCKS), were gradually elevated up to 72 h upon incubation with Abeta(1-40). Anoxia followed by 30 min normoxia enhanced MARCKS phosphorylation in the membrane but not in the cytosolic fraction. In the presence of Abeta(1-40), phosphorylation of MARCKS was reduced. After 6 h normoxia, MARCKS phosphorylatability was diminished possibly because of protein kinase C down-regulation. The data suggest that a biphasic modulation of protein kinase C and MARCKS by Abeta(1-40) combined with anoxic stress may play a role in Alzheimer's disease pathology.  相似文献   

11.
Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging.  相似文献   

12.
To evaluate the role of renin-angiotensin system (RAS)-mediated oxidative stress in insulin resistance (IR), we compared the effects of the angiotensin II (ANG II) receptor blocker (ARB) valsartan and a superoxide dismutase (SOD) mimetic, tempol, on whole body glucose tolerance and soleus muscle insulin-stimulated glucose uptake in transgenic hypertensive TG(mREN-2)27 (Ren-2) rats. Ren-2 rats and Sprague-Dawley (SD) controls were given valsartan (30 mg/kg) or tempol (1 mmol/l) in their drinking water for 21 days. IR was measured by glucose tolerance testing (1 g/kg glucose ip). IR index (AUC(glucose) x AUC(insulin)) was significantly higher in the Ren-2 animals compared with SD controls (30.5 +/- 7.0 x 10(6) arbitrary units in Ren-2 vs. 10.2 +/- 2.4 x 10(6) in SD, P < 0.01). Both valsartan and tempol treatment normalized Ren-2 IR index. Compared with SD controls (100%), there was a significant increase in superoxide anion production (measured by lucigenin-enhanced chemiluminescence) in soleus muscles of Ren-2 rats (133 +/- 15%). However, superoxide production was reduced in both valsartan- and tempol-treated (85 +/- 22% and 59 +/- 12%, respectively) Ren-2 rats. Insulin (INS)-mediated 2-deoxyglucose (2-DG) uptake (%SD basal levels) was substantially lower in Ren-2 rat soleus muscle compared with SD (Ren-2 + INS = 110 +/- 3% vs. SD + INS = 206 +/- 12%, P < 0.05). However, Ren-2 rats treated with valsartan or tempol exhibited a significant increase in insulin-mediated 2-DG uptake compared with untreated transgenic animals. Improvements in skeletal muscle insulin-dependent glucose uptake and whole body IR in rats overexpressing ANG II by ARB or SOD mimetic indicate that oxidative stress plays an important role in ANG II-mediated insulin resistance.  相似文献   

13.
The pathophysiology of mitochondrial DNA (mtDNA) diseases is caused by increased cell death and dysfunction due to the accumulation of mutations to mtDNA. While the disruption of oxidative phosphorylation is central to mtDNA diseases, many other factors, such as Ca2+ dyshomeostasis, increased oxidative stress and defective turnover of mitochondrial proteins, may also contribute. The relative importance of these processes in causing cell dysfunction and death is uncertain. It is also unclear whether these damaging processes lead to the disease phenotype through affecting cell function, increasing cell death or a combination of both. These uncertainties limit our understanding of mtDNA disease pathophysiology and our ability to develop rational therapies. Here, we outline how the accumulation of mtDNA mutations can lead to cell dysfunction by altering oxidative phosphorylation, Ca2+ homeostasis, oxidative stress and protein turnover and discuss how these processes affect cell function and susceptibility to cell death. A better understanding of these processes will eventually clarify why particular mtDNA mutations cause defined syndromes in some cases but not in others and why the same mutation can lead to different phenotypes.  相似文献   

14.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

15.
This study reports an examination of the effects of endogenous oxidative stress on primary cultures of rat hepatocytes. To produce endogenous oxidative stress, 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS), which are known to inhibit catalase and glutathione peroxidase activities, respectively, were used. When ATZ or MS was used alone, the extent of cell injuries was negligible, but a combination of the two agents resulted in cell death as assessed by trypan blue exclusion after 24 h of incubation. Cell death was accompanied by an approximately 5.8-fold the increase in the levels of thiobarbituric acid reactive substances, and showed chromatin condensation and DNA fragmentation. These deleterious effects were time dependent in that no significant change was detected up to 6 h. Treatment with SKF or 1-aminobenzotriazole, which are inhibitors of cytochrome P450, greatly attenuated this cell death as well as prevented chromatin condensation and DNA fragmentation. N(G)-monomethyl-L-arginine at 1 mM had no inhibitory effects on these changes. These findings suggest that endogenous oxidative stress under these conditions induced cell death that resembles apoptosis and that endogenous oxidative stress was directly related to the cytochrome P450 enzyme system in this system.  相似文献   

16.
采用液体悬浮培养方法,研究胞外三磷酸腺苷(ATP)通过一氧化碳(NO)调节镉诱导对烟草(Nicotiana tabacum L.)悬浮细胞氧化压力和死亡水平的影响。结果显示,镉离子(Cd^2+)可以以剂量依赖的模式引起烟草悬浮细胞氧化压力和死亡水平的上升,而施加外源ATP可有效缓解Cd^2+诱导的氧化压力和细胞死亡。进一步研究发现,和外源ATP的缓解作用相似,NO的供体硝普钠(SNP)同样可以缓解Cd^2+诱导的氧化压力和细胞死亡水平的上升;且NO合成抑制剂(L-NAME)可部分解除外源ATP的缓解作用。研究结果表明外源ATP可通过NO调节镉诱导的氧化压力和细胞死亡。  相似文献   

17.
Oxidative stress can be a significant cause of cell death and apoptosis. We performed studies in HepG2 cells to explore whether prior exposure to oxidative stress (“oxidative preconditioning”) and geldanamycin (GA) treatment can protect the cell from damage caused by subsequent oxidative insults. The cells were treated with 10 nM GA for 24 h before oxidative stress. Oxidative preconditioning was achieved by 2 h exposures to H2O2 (50 μM) separated by a 10-h recovery period in normal culture medium. Oxidative stress was induced by exposure to 500 μM H2O2 for 24 h. The effects of GA and oxidative preconditioning were investigated on the formation of Hsp90, vimentin, insoluble vimentin aggregates, and cleavage of vimentin in a cell culture model of oxidative stress. GA treatment leads to enhanced expression of Hsp90 and vimentin and to inhibition of vimentin protein aggregation. Similar results were obtained by oxidative preconditioning. It is confirmed that low concentrations of GA protected HepG2 cells from subsequent oxidative stress by increasing the levels of Hsp90 and by alleviating the extent of cell apoptosis induced by oxidative stress, which is similar to oxidative preconditioning. However, in contrast to preconditioning, GA treatment obviously changed binding activity of Hsp90 to vimentin cleavages. All the above indicated that low concentrations of GA treatment triggered cell protection from oxidative stress. Both the level of Hsp90 and its ability to bind with vimentin were changed by low concentrations of GA and might contribute to oxidative stress protection.  相似文献   

18.
Cortical neurons die in necrosis in the low-density (LD) culture, and in apoptosis in the high-density (HD) culture under the serum-free condition without any supplements. The neuronal death in LD culture was delayed by conditioned medium (CM) factors prepared from the HD culture. The CM switched the cell death mode from necrosis to apoptosis, characterized by various cell death markers and transmission electron microscopy. The CM inhibited the rapid decrease in cellular ATP levels and [3H]-2-deoxy glucose ([3H]-2-DG) uptake in the LD culture. Inhibitors of phospholipase C and protein kinase C effectively abolished the CM-induced elevation of survival activity, [3H]-2-DG uptake and ATP levels, and necrosis-apoptosis switch. All these results suggest that CM caused the cell death mode switch from necrosis to apoptosis through phospholipase C- and protein kinase C-mediated mechanisms.  相似文献   

19.
20.
Oxidative stress-mediated cell death in cardiomyocytes reportedly plays an important role in many cardiac pathologies. Our previous report demonstrated that mitochondrial SIRT3 plays an essential role in mediating cell survival in cardiac myocytes, and that resveratrol protects cardiomyocytes from oxidative stress-induced apoptosis by activating SIRT3. However, the exact mechanism by which SIRT3 prevents oxidative stress remains unknown. Here, we show that exposure of H9c2 cells to 50 μM H2O2 for 6 h caused a significant increase in cell death and the down-regulation of SIRT3. Reactive oxygen species (ROS)-mediated NF-κB activation was involved in this SIRT3 down-regulation. The SIRT3 activator, resveratrol, which is considered an important antioxidant, protected against H2O2-induced cell death, whereas the SIRT inhibitor, nicotinamide, enhanced cell death. Moreover, resveratrol negatively regulated H2O2-induced NF-κB activation, whereas nicotinamide enhanced H2O2-induced NF-κB activation. We also found that SOD2, Bcl-2 and Bax, the downstream genes of NF-κB, were involved in this pathological process. These results suggest that SIRT3 protects cardiomyocytes exposed to oxidative stress from apoptosis via a mechanism that may involve the NF-κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号