首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete maturity, their inflorescence stems display a 25–35% decreased lignin level, some alterations in lignin structure with a higher frequency of resistant interunit bonds and a higher content in cell wall-bound ferulic esters. Ferulic acid-coniferyl alcohol ether dimers were found for the first time in dicot cell walls and in similar levels in wild-type and mutant plants. The expression of CCR2, a CCR gene usually involved in plant defense, was increased in the mutants and could account for the biosynthesis of lignins in the CCR1-knockout plants. Mutant plantlets have three to four-times less sinapoyl malate (SM) than controls and accumulate some feruloyl malate. The same compositional changes occurred in the rosette leaves of greenhouse-grown plants. By contrast and relative to the control, their stems accumulated unusually high levels of both SM and feruloyl malate as well as more kaempferol glycosides. These findings suggest that, in their hypolignified stems, the mutant plants would avoid the feruloyl-CoA accumulation by its redirection to cell wall-bound ferulate esters, to feruloyl malate and to SM. The formation of feruloyl malate to an extent far exceeding the levels reported so far indicates that ferulic acid is a potential substrate for the enzymes involved in SM biosynthesis and emphasizes the remarkable plasticity of Arabidopsis phenylpropanoid metabolism.  相似文献   

2.
The biosynthetic pathways to monolignols in Magnolia kobus were investigated by feeding stems with a deuterium-labeled precursor. Pentadeutero [γ,γ-2H2, OC2H3] coniferyl alcohol was supplied to shoots of Magnolia kobus and the incorporation of the labeled precursor into lignin was traced by gas chromatography-mass spectrometry. In addition to the direct incorporation of the labeled precursor into guaiacyl units, we detected a significant amount of pentadeuterium-labeled syringyl units with two γ-deuterium atoms. The relative level of trideuterium-labeled syringyl monomers (the result of conversion via the cinnamic acid pathway, in which two γ-deuterium atoms are removed during enzymatic re-oxidation) was negligible. Our results provide conclusive evidence for a novel alternative pathway for generation of lignin subunits at the monolignol stage and they suggest that this new pathway might be important for regulation of the composition of lignin. Received: 21 August 1998 / Accepted: 30 September 1998  相似文献   

3.
p -hydroxyphenyl (H)-, guaiacyl (G)- and syringyl (S) propane, in situ is described. New pathways that regulate the ratio of S to G moieties operating at the stages of cinnamoyl CoA, cinnamyl aldehyde and cinnamyl alcohol are introduced. The roles of monolignol glucoside in the lignification of tree xylem are discussed. The results of gene manupulations that alter the lignin structures are also introduced. Received 15 September 2001/ Accepted in revised form 16 October 2001  相似文献   

4.
Matsui N  Chen F  Yasuda S  Fukushima K 《Planta》2000,210(5):831-835
Aglycons derived from 4-O-β-D-glucosides of both caffeyl and 5-hydroxyconiferyl alcohols were incorporated into guaiacyl (G) and syringyl (S) units in the lignin of newly formed xylem of several angiosperms. It is likely that these aglycons enter the cinnamyl alcohol pathway as intermediates in the introduction of methoxyl groups onto aromatic rings, and serve as precursors for the biosynthesis of lignin. The S/G ratio in this pathway was coincident with the ratio in the cell wall lignin of each tree. Our results indicate that the cinnamyl alcohol pathway involves the same mechanisms as the cinnamic acid and cinnamyl CoA pathways and they suggest that this novel pathway might be part of a metabolic grid in the biosynthesis of lignin. Received: 8 September 1999 / Accepted: 4 October 1999  相似文献   

5.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

6.
Capillary zone electrophoresis has been used to monitor the first steps of the dehydrogenative polymerization of coniferyl alcohol, sinapyl aldehyde, or a mixture of both, catalyzed by the horseradish peroxidase (HRP)-H(2)O(2) system. When coniferyl alcohol was the unique HRP substrate, three major dimers were observed (beta-5, beta-beta, and beta-O-4 interunit linkages) and their initial formation velocity as well as their relative abundance varied with pH. The beta-O-4 interunit linkage was thus slightly favored at lower pH values. In contrast, sinapyl aldehyde turned out to be a very poor substrate for HRP except in basic conditions (pH 8). The major dimer observed was the beta,beta'-di-sinapyl aldehyde, a red-brown exhibiting compound which might partly participate in the red coloration usually observed in cinnamyl alcohol dehydrogenase-deficient angiosperms. Finally, when a mixture of coniferyl alcohol and sinapyl aldehyde was used, it looked as if sinapyl aldehyde became a very good substrate for HRP. Indeed, coniferyl alcohol turned out to serve as a redox mediator (i.e. "shuttle oxidant") for the sinapyl aldehyde incorporation in the lignin-like polymer. This means that in particular conditions the specificity of oxidative enzymes might not hinder the incorporation of poor substrates into the growing lignin polymer.  相似文献   

7.
We report on the rerouting of peroxisomal alcohol oxidase (AO) to the secretory pathway of Hansenula polymorpha. Using the leader sequence of the Saccharomyces cerevisiae mating factor alpha (MFalpha) as sorting signal, AO was correctly sorted to the endoplasmic reticulum (ER), which strongly proliferated in these cells. The MFalpha presequence, but not the prosequence, was cleaved from the protein. AO protein was present in the ER as monomers that lacked FAD, and hence was enzymatically inactive. Furthermore, the recombinant AO protein was subject to gradual degradation, possibly because the protein did not fold properly. However, when the S. cerevisiae invertase signal sequence (ISS) was used, secretion of AO protein was observed in conjunction with bulk of the protein being localized to the ER. The amount of secreted AO protein increased with increasing copy numbers of the AO expression cassette integrated into the genome. The secreted AO protein was correctly processed and displayed enzyme activity.  相似文献   

8.
9.
Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly to SDG. The linker molecule HMGA was found to account for 11% (w/w) of the lignan macromolecule. Based on the extinction coefficients and RP-HPLC data, it was determined that SDG contributes for 62.0% (w/w) to the lignan macromolecule, while CouAG, FeAG, and HDG contribute for 12.2, 9.0, and 5.7% (w/w), respectively.Analysis of fractions of lignan macromolecule showed that the higher the molecular mass, the higher the proportion of SDG was. An inverse relation between the molecular mass and the proportion (%) CouAG + FeAG was found. Together with the structural information of oligomers of lignan macromolecule obtained after partial saponification, it is hypothesized that the amount of CouAG + FeAG present during biosynthesis determines the chain length of lignan macromolecule.Furthermore, the chain length was estimated from a model describing lignan macromolecule based on structural and compositional data. The average chain length of the lignan macromolceule was calculated to be three SDG moieties with CouAG or FeAG at each of the terminal positions, with a variation between one and seven SDG moieties.  相似文献   

10.
Ferulic acid (FA) is a natural hydroxycinnamic acid widely found in medicinal and edible plants. Several experts have reported the biological potential of FA, including antioxidant and antimicrobial activities. The use of microorganisms in the derivatization of natural products is a useful and advantageous approach to the achievement of high value-added compounds. In order to access chemical derivatives, we conducted the biotransformation of FA by Aspergillus brasiliensis ATCC 16404 for 5 d. In the second day of fermentation, the FA was converted into the new (E)-3-(4-hydroxy-3-methoxyphenyl)-2-methoxyacrylic acid. This is the first time that the extended π-conjugation remained in the chemical structure after the biotransformation of FA. The cytotoxicities of FA and its derivative were evaluated. The biotransformation yielded a derivative less toxic than the parent compound.  相似文献   

11.
Alkyl beta-D-glucosides were synthesized from D-glucose and alcohols by reverse hydrolysis using the commercially available almond beta-D-glucosidase in 9:1 (v/v) acetonitrile-water medium. The main characteristics of this enzyme-catalyzed glucosylation were established by using 2-hydroxybenzyl alcohol. The reaction is entirely regio- and stereoselective. The solvent plays a fundamental role because, by decreasing the water concentration in the medium, the shift of the reaction equilibrium toward synthesis is realized without using an excessive amount of alcohol. Nevertheless, a minimum amount of water is necessary to maintain the enzyme activity. In contrast to the use of the enzyme in aqueous medium, the pH of the added water in acetonitrile did not influence the synthesis. Using this procedure, we have conducted systematic glucosylation of numerous alcohols and we have investigated enzyme specificity and alcohol reactivity. The enzyme has a pronounced affinity for the alcohols containing a phenyl group, and enantioselectivity for the aglycon is obtained with 1-phenylethyl alcohol. Moreover, by using almond beta-D-glucosidase it was also possible to synthesize alkyl beta-D-galactosides. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
A highly basic peroxidase isoenzyme was shown to be released to the culture medium of tomato (Lycopersicon esculentum) hairy roots grown in Murashige-Skoog (MS) liquid medium when it was supplemented with 100 mM NaCl. In this paper we demonstrate that this enzyme is ionically bound to cell walls and that the release was a consequence of the continuous agitation of the tissue in a high ionic strength medium with salt addition. In order to establish the physiological role of this isoenzyme we partially purified it, and we analysed its kinetic properties as coniferyl alcohol peroxidase. The peroxidase isoenzyme showed a high catalytic efficiency for this substrate, which suggests that it would be associated with the ligno-suberization process. To confirm the involvement of this isoenzyme in that process, we studied the pattern of ligno-suberization of the tissue under different conditions of growth. Our results suggest that this basic peroxidase would be indeed involved in ligno-suberization since its leakage from cell walls, induced by 100 mM NaCl in liquid MS, caused less ligno-suberization of exo and endodermis. On the contrary, more ligno-suberization was seen in cell walls when the hairy roots were grown in a salt-supplemented MS solid medium without contact with it, a condition in which the release of the isoenzyme would be avoided. Thus, through the changes produced by the release of the enzyme from its site of action, we could demonstrate the physiological role of this peroxidase in the processing of root cell walls, being part of control mechanisms of ion and water fluxes through the root.  相似文献   

13.
Improvement in H2 production was achieved through redirection of metabolic pathways by blocking formation of alcohol and some organic acids in Enterobacter cloacae IIT-BT 08. The wild type strain was more susceptible to allyl alcohol (7 mM) and to the combined effect of NaBr and NaBrO3 (40 mM each at pH 5.5) than were double mutants, with defects in both alcohol and organic acid formation pathways, which had higher H2 yields (3.4 mol mol–1 glucose) than the wild type strain (2.1 mol mol–1 glucose).  相似文献   

14.
Summary There are few inexpensive, practical methods to increase the usable nitrogen level in a substrate to be fermented to a potable alcohol product, but the provision of adequate assimilable nitrogen to a fermentation medium is critical for rapid and full wort attenuation. One practical solution to circumvent the problem may be to increase the inoculation rate to much higher than recommended levels. In this work, an increase in the pitching rate from 1.6×107 cfu/ml to 8×107 cfu/ml was shown to alleviate fermentation problems caused by nitrogen limitation. Attenuation and ethanol production rates became independent of the initial wort-free amino nitrogen (FAN) concentration, as did yeast viability and maximal yeast cell number. However, the final total cell mass was lower if the wort was nitrogen-deficient, regardless of the pitching rate. These cells were smaller and/or lighter and contained less protein at the end of fermentation. Such yeast could cause problems in subsequent fermentations if reuse of yeast (common in brewing) was considered.  相似文献   

15.
《Journal of bryology》2013,35(1):8-14
Abstract

The accumulation of ultraviolet-absorbing compounds (UVACs) within the cell walls of bryophytes provides a spatially uniform filter of ultraviolet-B (UV-B) radiation, and thus represents an important protective mechanism against its adverse effects. Here, the abilities of several cell-wall-degrading enzymes and of alkali (NaOH) in extracting cell-wall-bound UVACs from the aquatic liverwort Jungermannia exsertifolia Steph. subsp. cordifolia (Dumort.) Váňa were compared, in order to select the most appropriate extraction method and to achieve the most reliable assessment of the degree of protection afforded by UVACs against UV-B. We analysed both the overall level of UVACs and the concentrations of two hydroxycinnamic acids (p-coumaric acid and ferulic acid). The most effective extraction (statistically significant) of cell-wall-bound UVACs, in terms both of their overall levels and of the concentrations of individual compounds, was achieved using alkaline digestion, which was more efficient than any of the enzymatic digestions trialled. This may be attributable to the ability of the alkali to break simultaneously both hydrogen bonds and covalent bonds within the cell wall, including ester linkages between phenolics and carbohydrates. In addition, alkaline digestion was more rapid than enzymatic digestions, and was not excessively aggressive, because the molecular integrity of the individual compounds analysed was preserved. Thus, alkaline digestion can be recommended for the extraction of cell-wall-bound UVACs in J. exsertifolia subsp. cordifolia, whether these compounds are to be evaluated overall or individually.  相似文献   

16.
D. Ritz  M. Kluge  H. J. Veith 《Planta》1986,167(2):284-291
Phyllodia of the Crassulacean acid metabolism (CAM) plant Kalanchoë tubiflora were allowed to fix 13CO2 in light and darkness during phase IV of the diurnal CAM cycle, and during prolongation of the regular light period. After 13CO2 fixation in darkness, only singly labelled [13C]malate molecules were found. Fixation of 13CO2 under illumination, however, produced singly labelled malate as well as malate molecules which carried label in two, three or four carbon atoms. When the irradiance during 13CO2 fixation was increased, the proportion of singly labelled malate decreased in favour of plurally labelled malate. The irradiance, however, did not change either the ratio of labelled to unlabelled malate molecules found in the tissue after the 13CO2 application, or the magnitude of malate accumulation during the treatment with label. The ability of the tissue to store malate and the labelling pattern changed throughout the duration of the prolonged light period. The results indicate that malate synthesis by CAM plants in light can proceed via a pathway containing two carboxylation steps, namely ribulose-1,5-bisphosphate-carboxylase/oxygenase (EC 4.1.1.39) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) which operate in series and share common intermediates. It can be concluded that, in light, phosphoenolpyruvate carboxylase can also synthesize malate independently of the proceeding carboxylation step by ribulose-1,5-bisphosphate carboxylase/oxygenase.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - TMS trimethylsilyl  相似文献   

17.
18.
In vitro fermentations were carried out by using a model of the human colon to stimulate microbial activities of gut bacteria. The model consisted of a three-stage culture system. Bacterial populations were evaluated under the effect of three types of arabinoxylan, a nonstarch polysaccharide derived from wheat, the water-unextractable arabinoxylan fraction (WU-AX), WU-AX pretreated with exogenous xylanase and the soluble water-extractable arabinoxylan fraction (WE-AX). The xylanase pretreated (WU-AX) had a stimulatory effect upon colonic bifidobacteria throughout all three vessels. Counts of Bacteroides spp. and Clostridium spp. were also both significantly reduced. Addition of the WU-AX substrates to the first vessel resulted in induction of bacterial synthesis of extracellular hydrolytic enzymes xylanase and ferulic acid esterase which are both required for bacterial metabolism of WU-AX; this induction was significantly greater with the xylanase treated WU-AX.  相似文献   

19.
Estrogens have been shown to have many positive effects on the function of arterial wall, and recent evidence suggest that 17-estradiol has a direct action in reducing the accumulation of cholesteryl ester in macrophages. The mechanisms underlying the effects of 17-estradiol on foam cell formation, however are poorly understood. The aim of this study is to investigate the role of 17-estradiol in the regulation of the cholesteryl ester cycle and cholesterol efflux in human macrophages. In addition, the influence of 17-estradiol on apolipoprotein E (apoE) and lipoprotein lipase (LDL) secretion by the cells was also tested. Human Monocyte Derived Macrophages (HMDM), matured in the presence or the absence of 17-estradiol, were loaded with [3H]-cholesteryl ester-labeled-acetyl LDL (low density lipoprotein) and the efflux of radioactivity into the medium was measured. The effect of 17-estradiol on cellular activities of acyl coenzyme A: cholesterol acyl transferase (ACAT), and both neutral and acid cholesteryl ester hydrolase (CEH) and the secretion of apoE and LDL into the medium, were also studied. The results indicate that 17-estradiol induces an increase in the amount of labeled cholesterol released from the cells and, the data obtained from the measurements of ACAT and CEH activities showed that, in estrogen-treated HMDM, the cholesteryl ester cycle favors the hydrolysis of lipoprotein cholesterol by CEH in comparison with its acylation by ACAT. In particular, for the first time a strong enhancement of neutral and acid CEH in human macrophages by 17-estradiol, was demonstrated. ApoE and LDL secretion increased during the maturation of monocytes to macrophages, and was not modified by 17-estradiol. In contrast, loading the cells with cholesterol by incubation in the presence of acetylated or oxidized LDL produced an increase in the levels of apoE secreted by both estrogen-treated and control macrophages. The activity of LPL found in the cell medium, on the other hand, in lipid loaded cells tended to be increased only in estrogen treated macrophages, suggesting that the effects of estrogen on unloaded macrophages are different from those produced on lipid-loaded macrophages. On the whole, the present findings suggest that one of the mechanisms by which 17-estradiol acts to reduce cholesterol accumulation in macrophages is by increasing reverse cholesterol transport through the enhancement of the cholesteryl ester cycle, so that the generation of intracellular unesterified cholesterol for excretion from the cells is favored.  相似文献   

20.
To identify novel psoriasis-associated genes, we focused on several ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin in patients with psoriasis vulgaris, as assessed by microarray assay. In this paper, a full-length cDNA corresponding to one of those ESTs (AI440266) was isolated by screening of cultured human keratinocyte cDNA libraries. This cDNA has an open reading frame of a 309-amino-acid protein, sharing significant homology to one of the short-chain alcohol dehydrogenase/reductase (SDR) families that can catalyze the first and rate-limiting step that generates retinaldehyde from retinol. So, this gene was designated as hRDH-E2 (human epidermal retinal dehydrogenase 2). The hRDH-E2 gene has a single functional copy on chromosome 8q12.1, spanning approximately 20kb with seven exons. The deduced amino acid sequence contains three motifs that are conserved in the SDR family. Qualitative RT-PCR demonstrated that the mRNA levels of hRDH-E2 were significantly elevated in the affected skin in psoriasis patients as compared to the unaffected skin in patients and the normal skin in healthy individual. These results suggest that hRDH-E2 may be involved in the pathogenesis of psoriasis through its critical role in retinol metabolism in keratinocyte proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号