首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Epithelial cell polarity is essential for the establishment and maintenance of morphological and functional asymmetries that underlie normal renal structure and function and are brought about by the appropriate delivery of growth factor receptors and ion and fluid transporters and channels to apical or basolateral cell membranes. The fundamental process of cellular polarization is established early during development and is controlled by sets of evolutionarily conserved proteins that integrate intrinsic and extrinsic polarity cues. Specialized structural domains between adjacent cells and cells with their matrix, termed adherens junctions (AJ) and focal adhesions (FA), respectively, are formed that contain specific components of multi-molecular complexes acting as sites to recruit proteins and to activate intracellular mechano-transduction pathways. Regulation of these processes results in tight spatio-temporal control of renal tubule growth and lumen diameter. Abnormalities in macromolecular polarization complexes lead to a variety of diseases in different organs, a common example of which is Polycystic Kidney Disease (PKD), where epithelial cysts replace normal renal tubules. Membrane protein polarity defects in Autosomal Dominant (AD) PKD include the mis-polarization of normally basolateral membrane proteins to apical, lumenal membranes, such as epidermal growth factor (EGFR/ErbB) receptors and Na+K+-ATPase-α1 subunit; mis-polarization of normally apical membrane proteins to basolateral membranes, including the Na+K+2Cl (NKCC1) symporter; and the failure to traffic and insert proteins into membranes resulting in their intracellular accumulation, such as E-cadherin and the β1 subunit of Na+K+-ATPase. Abnormalities in structural AJ, FA and polarity complexes in ADPKD epithelia include loss of E-cadherin, and focal adhesion kinase (FAK), MALS-3, Crb and Dlg complexes as well as disruptions in Rab/sec and syntaxin trafficking and membrane docking pathways. Since proper polarization of epithelial cells lining renal tubules is essential for normal kidney development and differentiation to prevent abnormal cystic dilation, interventions to reverse polarity defects to normal would offer therapeutic opportunities for PKD. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

2.
3.
beta-Glucuronidases purified from human hepatoma and from normal liver could serve as a substrate for a cAMP-dependent protein kinase. The rate of phosphorylation reaction of the hepatoma beta-glucuronidase was rapid, whereas that of the normal liver beta-glucuronidase was slow and much lower. Stoichiometry of phosphorylation was 4.3 and 0.46 mol of phosphate/mol of the beta-glucuronidase from the hepatoma and normal liver, respectively. Tryptic peptide mapping of 32P-labeled beta-glucuronidase from hepatoma identified two distinct phosphopeptides (X and Y). The peptide from hepatoma hydrolase was phosphorylated predominantly at the X, while the peptide Y was the major phosphopeptide in the hydrolase of normal liver. Analysis of phosphoamino acids revealed two sites, phosphoserine and phosphothreonine. beta-Glucuronidase from hepatoma consisted of a major subunit with molecular mass of 64,000 (64 kDa) and a minor subunit with 76 kDa, whereas the hydrolase from normal liver had almost exclusively 64 kDa subunit. 32P-labeled beta-glucuronidase indicated that the 64 kDa subunit was phosphorylated both in hepatoma and normal liver beta-glucuronidases.  相似文献   

4.
Nuclear translocation of cAMP-dependent protein kinase   总被引:2,自引:0,他引:2  
A study was made of nuclear translocation of cAMP-dependent protein kinase and its subunits, as well as of the binding of these proteins to metaphase chromosomes. The CHO cell cultures were treated with 3H-labelled protein kinase and its subunits. The results indicate that cAMP-dependent protein kinase became translocated into the nucleus in a dissociated state and that the subunits have specific binding sites on chromatin. Transformation of normal mouse fibroblasts by virus SV40 interferes with the nuclear translocation of the regulatory subunit. The process is restored when the level of cAMP in the system is increased. Binding of the regulatory subunit to metaphase chromosomes of cells transformed by virus SV40 does not change. In the case of spontaneous cancer (KB cells) translocation of the regulatory subunit remains unaffected, whereas acceptance of the protein by the metaphase chromosomes is impeded. The results of this work suggest that compartmentalization of cAMP-dependent protein kinase—and particularly of its regulatory subunit—in the cell is highly significant for cellular processes. Disorders arising as a result of neoplastic transformation involve changes in nuclear translocation of the regulatory subunit and in its binding to the structural elements of the genome.  相似文献   

5.
The phosphorylation of nuclear proteins of porcine brain cAMP-dependent protein kinase was studied. Some nuclear proteins after extraction from the nuclei served as substrates for protein kinase. Lysine-rich histones H1, H2a and H2b were found to accept phosphate during chromatin phosphorylation by cAMP-dependent protein kinase. Phosphorylation of intact nuclei revealed that in such a system only histone H1 is a substrate for cAMP-dependent protein kinase. In the presence of DNA the histones are phosphorylated by cAMP-dependent protein kinase in a different manner. It was concluded that DNA can determine the accessibility of protein substrates for the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

6.
cAMP-dependent protein kinase in the supernatant fraction of the homogenate of sea urchin eggs and embryos obtained by centrifugation at 105,000g was investigated in the present study. In the previous report, the dissociation constant between cAMP-binding proteins and cAMP changed during the development. This suggests that the nature of cAMP-dependent protein kinase, which has been well established to be the major cAMP receptor, changes during the development. In the present study, four protein kinases were separated through DEAE-cellulose column from the supernatant of unfertilized egg homogenate. One of them was cAMP-dependent protein kinase. The others were cAMP-independent ones. One among them was phosvitin kinase, and the others were not identified at present. The activity of cAMP-dependent protein kinase gradually increased during a period from fertilization to the swimming blastula stage. During this period, cleavages occurred at a high rate, and the rate decreased after hatching out. Thus, it is supposed that cAMP-dependent protein kinase in the supernatant may take a part in the mechanism of cleavage. The activity, however, became very low at the mesenchyme blastula, the gastrula, and the pluteus stages. cAMP-binding capacity was observed in the sedimentable fraction and the supernatant fraction, respectively, obtained by 105,000g centrifugation at all stages examined. If the structure-bound cAMP-binding protein is also cAMP-dependent protein kinase, it may play different roles in the mechanism of development.  相似文献   

7.
cAMP-dependent protein kinase from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The cAMP-dependent protein kinase (cAK) from Dictyostelium discoideum is an enzyme composed of one catalytic and one regulatory subunit. Upon binding of cAMP, the holoenzyme dissociates to liberate free active catalytic subunits. The cAK is developmentally regulated, ranging from very little activity in vegetative cells to maximal expression in postaggregative cells. Although there is no immunological cross-reaction between the subunits of cAKs from Dictyostelium and from other organisms, they share several biochemical properties. A complete cDNA for the regulatory subunit has been cloned and sequenced. Only one copy of the gene for the regulatory subunit is present per haploid genome. On the basis of the comparison of the structure of the cAK from Dictyostelium with its counterparts in yeast and higher eukaryotes, we propose a model for the evolution of cyclic-nucleotide-binding proteins.  相似文献   

8.
cAMP-dependent protein kinase was compared in normal and Rous Sarcoma Virus transformed chicken embryo fibroblasts. Total cAMP binding activity and cAMP-dependent histone kinase activity were unaltered by RSV transformation. The apparent Km for activation of histone kinase activity by cAMP was 35 nM in both normal and transformed cells. Using 8-N3-cAMP photoaffinity labeling, normal and transformed cells were also found to contain equal quantities of a single 42,000 Mr regulatory sub-unit isoenzyme of A-kinase. This isoenzyme corresponded to the lower molecular weight isoenzyme of the two enzymes found in normal chicken skeletal muscle. Both avian isoenzymes were about 4,000 Mr smaller than the corresponding bovine type I and type II regulatory subunits. Rous Sarcoma Virus transformation does not directly alter the amount or activity of cAMP-dependent protein kinase.  相似文献   

9.
Caldesmon is a calmodulin- and actin-binding protein present in both smooth and non-muscle tissue. The present study demonstrates that platelet caldesmon is a substrate for cAMP-dependent protein kinase (protein kinase A). Purified platelet caldesmon has an apparent molecular mass of 82 kDa on sodium dodecyl sulfate-polyacrylamide gels and can be phosphorylated in vitro by the catalytic subunit of protein kinase A to a level of 2 mol of phosphate/mol of caldesmon. Phosphorylation of caldesmon by protein kinase A results in a shift in the apparent molecular mass of the protein to 86 kDa. When caldesmon was immunoprecipitated from intact platelets treated with prostacyclin (PGI2) the same shift in apparent molecular mass of caldesmon was observed. Comparison of two-dimensional tryptic phosphopeptide maps of caldesmon phosphorylated in vitro by protein kinase A with caldesmon immunoprecipitated from intact platelets verified that protein kinase A was responsible for the observed increase in caldesmon phosphorylation in PGI2-treated platelets. The present study demonstrates that although caldesmon is basally phosphorylated in the intact platelet, activation of protein kinase A by PGI2 results in the significant incorporation of phosphate into two new sites. In addition, the effects of phorbol ester, collagen, and thrombin on caldesmon phosphorylation were also examined. Although phorbol ester treatment results in a significant increase in caldesmon phosphorylation apparently by protein kinase C, treatment of intact platelets with thrombin or collagen does not result in an increase in caldesmon phosphorylation.  相似文献   

10.
Phosphorylation sites of protamines by protein kinase C and cAMP-dependent protein kinase (protein kinase A) were studied. Using clupeine Y1 as a substrate, protein kinase C phosphorylates both Ser and Thr residues, whereas protein kinase A phosphorylates only Ser residue(s). Protein kinase C phosphorylates all Ser and Thr residues of clupeine Y2 and Z, however protein kinase A phosphorylates mainly Ser9 and slightly Thr5 in clupeine Y2 and Ser6 and Ser10 in clupeine Z. These results suggest that protein kinase C recognizes more sites than those of protein kinase A and may participate in protamine phosphorylation in vivo.  相似文献   

11.
The development of a fluorescent assay to detect activity of the mitochondrial cAMP-dependent protein kinase (PKA) is described. A peptide-based sensor was utilized to quantify the relative amount of PKA activity present in each compartment of the mitochondria (the outer membrane, the intermembrane space, and the matrix). In the process of validating this assay, we discovered that PKA activity is regulated by the protease calpain. Upon exposure of bovine heart mitochondria to digitonin, Ca2 +, and a variety of electron transport chain inhibitors, the regulatory subunits of the PKA holoenzyme (R2C2) are digested, releasing active catalytic subunits. This proteolysis is attenuated by calpain inhibitor I (ALLN). This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

12.
In eukaryotic cells, the universal second messenger cAMP regulates various aspects of development and differentiation. The primary target for cAMP is the regulatory subunit of cAMP-dependent protein kinase A (PKA), which, upon cAMP binding, dissociates from the catalytic subunit and thus activates it. In the soil amoeba Dictyostelium discoideum, the function of PKA in growth, development and cell differentiation has been thoroughly investigated and substantial information is available. To obtain a more general view, we investigated the influence of PKA on development of the related species Polysphondylium pallidum. Cells were transformed to overexpress either a dominant negative mutant of the regulatory subunit (Rm) from Dictyostelium that cannot bind cAMP, or the catalytic subunit (PKA-C) from Dictyostelium. Cells overexpressing Rm rarely aggregated and the few multicellular structures developed slowly into very small fruiting bodies without branching of secondary sorogens, the prominent feature of Polysphondylium. Few round spores with reduced viability were formed. When mixed with wild-type cells and allowed to develop, the Rm cells were randomly distributed in aggregation streams, but were later found in the posterior region of the culminating slug or were left behind on the surface of the substratum. The PKA-C overexpressing cells exhibited precocious development and formed more aggregates of smaller size. Moreover, expression of PKA-C under the control of the prestalk-specific ecmB promoter of Dictyostelium leads to protrusions from aggregation streams. We conclude that Dictyostelium PKA subunits introduced into Polysphondylium cells are functional as signal components, indicating that a biochemically similar PKA mechanism works in Polysphondylium.  相似文献   

13.
Calmodulin-dependent protein kinase IV (CaM-kinase IV), a neuronal calmodulin-dependent multifunctional protein kinase, undergoes autophosphorylation in response to Ca2+ and calmodulin, resulting in activation of the enzyme (Frangakis et al. (1991) J. Biol. Chem. 266, 11309-11316). In contrast, the enzyme was phosphorylated by cAMP-dependent protein kinase, leading to a decrease in the enzyme activity. Thus, the results suggest differential regulation of CaM-kinase IV by two representative second messengers, Ca2+ and cAMP.  相似文献   

14.
The ATP analog specificities of the homogeneous cGMP-dependent protein kinase and the catalytic subunit of cAMP-dependent protein kinase have been compared by the ability of 27 analogs to compete with ATP in the protein kinase reaction. Although the data suggest general similarities between the ATP sites of the two homologous cyclic-nucleotide-dependent protein kinases, specific differences especially in the adenine binding pocket are indicated. These differences in affinity suggest potentially useful ATP analog inhibitors of each kinase. For example, apparent autophosphorylation of the purified regulatory subunit of the cAMP-dependent protein kinase is blocked by nebularin triphosphate, suggesting that the phosphorylation is catalyzed by trace contamination of cGMP-dependent protein kinase. Some of the ATP analogs have also been tested using phosphorylase b kinase in order to compare this enzyme with the cyclic-nucleotide-dependent enzymes. All three protein kinases have high specificity for the purine moiety of ATP, and lower specificity for the ribose or triphosphate. The similarity between the ATP site of phosphorylase b kinase to that of the cyclic-nucleotide-dependent protein kinases suggests that it is related to them. The ATP analog specificities of enzymes examined in this study are different from those reported for several unrelated ATP-utilizing enzymes.  相似文献   

15.
The catalytic subunit of cAMP-dependent protein kinase (PKA) can easily be expressed in Escherichia coli and is catalytically active. Four phosphorylation sites are known in PKA (S10, S139, T197 and S338), and the isolated recombinant protein is a mixture of different phosphorylated forms. Obtaining uniformly phosphorylated protein requires separation of the protein preparation leading to significant loss in protein yield. It is found that the mutant S10A/S139D/S338D has similar properties as the wild-type protein, whereas additional replacement of T197 with either E or D reduces protein expression yield as well as folding propensity of the protein. Due to its high sequence homology to Akt/PKB, which cannot easily be expressed in E. coli, PKA has been used as a surrogate kinase for drug design. Several mutations within the ATP binding site have been described to make PKA even more similar to Akt/PKB. Two proteins with Akt/PKB-like mutations in the ATP binding site were made (PKAB6 and PKAB8), and in addition S10, S139 and S338 phosphorylation sites have been removed. These proteins can be expressed in high yields but have reduced activity compared to the wild-type. Proper folding of all proteins was analyzed by 2D 1H, 15N-TROSY NMR experiments.  相似文献   

16.
cAMP-dependent protein kinase activation lowers hepatocyte cAMP   总被引:5,自引:0,他引:5  
Rat hepatocyte protein kinase was activated by incubating the cells with various cAMP analogs. Boiled extracts were then prepared and Sephadex G-25 chromatography was carried out. The G-25 procedure separated the analogs from cAMP since the resin had the unexpected property of binding cyclic nucleotides with differing affinities. Separation was necessary because the analogs would otherwise interfere with the sensitive protein kinase activation method developed for assay of cAMP. The cAMP analogs, but not 5'-AMP, lowered basal cAMP by 50-70%. The effect was rapid, analog concentration-dependent, and occurred parallel with phosphorylase activation, suggesting that the cAMP analogs act through cAMP-dependent protein kinase activation. A cAMP analog completely blocked the cAMP elevation produced by relatively low concentrations of glucagon, but did not block the phosphorylase response, indicating that the cAMP analog substitutes for cAMP as the intracellular activator of protein kinase. One implication of the results is that elevation of cAMP and protein kinase activity by hormones has a negative feedback effect on the cellular cAMP level.  相似文献   

17.
Molecular and Cellular Biochemistry - Temporal cellular events responsible for hormonal activation of responses mediated by the cAMP-dependent protein kinase (PKA) have been studied in living...  相似文献   

18.
Mechanistic studies of cAMP-dependent protein kinase action   总被引:4,自引:0,他引:4  
The details of the process by which protein kinase catalyzes phosphoryl group transfers are beginning to be understood. Early work that explored the primary specificity of cAMP-dependent protein kinase action enabled the synthesis of small peptide substrates for the enzyme. Enzyme-peptide interactions seem simpler to understand than protein-protein interactions, so peptide substrates have been used in most protein kinase studies. In most investigations the kinetics for the phosphorylation of small peptides have been interpreted as being consistent with mechanisms which do not invoke phospho-enzyme intermediates (see, for example, Bolen et al.). Protein kinase has been shown to bind two metal ions in the presence of a nucleotide. Using magnetic resonance techniques the binding of these ions has been utilized to elucidate the conformation of nucleotide and peptide substrates or inhibitors when bound in the enzymic active site. Also, two new peptides with the form Leu-Arg-Arg-Ala-Ser-Y-Gly, where Y was either Pro or (N-methyl)Leu, were synthesized and found not to be substrates, within the limits of detection, for protein kinase. The striking lack of affinity that protein kinase has for such peptides which are unlikely to form a beta 3-6 turn has not been reported before. Our results may indicate that this type of turn is a requirement for protein kinase catalyzed phosphorylation or that these peptides lack the ability to form a particular hydrogen bond with the enzyme. Magnetic resonance techniques have indicated that the distance between the phosphorous in the gamma-phosphoryl group of MgATP and the hydroxyl oxygen of serine in the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly is 5.3 +/- 0.7 A. This, together with certain kinetic evidence, suggests that the mechanism by which protein kinase catalyzes phosphoryl group transfer has considerable dissociative character. Chemical modifications, including one using a peptide-based affinity label, have identified two residues at or near the active site, lysine-72 and cysteine 199. While neither of these groups has been shown to be catalytically essential, similar studies may help to identify groups that are directly involved in the catalytic process. Finally, a spectrophotometric assay for cAMP-dependent protein kinase has been described. Using this assay the preliminary results of an in-depth study of the pH dependence of protein kinase catalyzed phosphoryl group transfer have been obtained. This study shall aid in the identification of active site residues and should contribute to the elucidation of the enzyme's catalytic mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

20.
To elucidate the role of cAMP and different cAMP-dependent protein kinases (PKA; A-kinase) in lung cell proliferation, we investigated rat alveolar type 2 cell proliferation in relation to activation or inhibition of PKA and PKA regulatory subunits (RIIalpha and RIalpha). Both the number of proliferating type 2 cells and the level of different regulatory subunits varied during 7 days of culture. The cells exhibited a distinct peak of proliferation after 5 days of culture. This proliferation peak was preceded by a rise in RIIalpha protein level. In contrast, an inverse relationship between RIalpha and type 2 cell proliferation was noted. Activation of PKA increased type 2 cell proliferation if given at peak RIIalpha expression. Furthermore, PKA inhibitors lowered the rate of proliferation only when a high RII level was observed. An antibody against the anchoring region of RIIalpha showed cell cycle-dependent binding in contrast to antibodies against other regions, possibly related to altered binding to A-kinase anchoring protein. Following activation of PKA, relocalization of RIIalpha was confirmed by immunocytochemistry. In conclusion, it appears that activation of PKA II is important in regulation of alveolar type 2 cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号