首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lactuca sativa L. cv. Grand Rapids) seedlings under acidic conditions by a phytochrome-mediated response. Microbeam irradiation of 1 mm root segments with the first (100 Jm−2) and second (1,000 Jm−2) maxima of the fluence response curve for red light induction of root hair initiation indicated that the ca. 5 mm apical portion of 12 mm long roots was the site of photoperception. The root hair-forming portion of the root was situated at a distance of 1.7 mm from the root tip at the time of red light irradiation and extended (at most 1.5 mm) towards the basal end at a later stage of development, irrespective of which portion of the root was irradiated with red light. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

3.
4.
Root hair formation is induced by low pH in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings cultured in mineral medium. The role of mineral concentrations in this phenomenon was investigated, especially for manganese. When lettuce seedlings were cultured in media that were deficient in calcium (Ca), manganese (Mn), boron (B) or molybdenum (Mo), morphological changes were induced in roots. Deficiency of other nutrients had little effect on root hair formation. Ca or B deficiency inhibited the growth of the main root and the formation of root hairs, regardless of pH. Mn or Mo deficiency increased root hair formation at pH 6 and suppressed main root growth slightly. In contrast, increasing the Mn concentration suppressed low-pH-induced root hair formation. The Mn content of roots grown at pH 4 was only about 15% of that at pH 6. In contrast, the Mo content of roots grown at low pH was about six times that of roots grown at neutral pH. These results suggest that root hair formation induced by low pH is at least partly mediated by decreased Mn uptake in root cells.  相似文献   

5.
We investigated whether low-pH-induced manganese (Mn) deficiency causes low-pH-induced root hair formation in lettuce seedlings. Both the number and length of root hairs increased in 0 μM Mn (Mn-free) at pH 6 and decreased in 3 mM Mn (excess Mn) at pH 4 compared with the values in 10 μM Mn (normal Mn). These results indicate an inhibitory effect of Mn on both root hair initiation and elongation. The time dependency of root hair induction caused by Mn deficiency corresponded to that caused by low pH. Within 1 h after the pH of the culture medium was reduced from pH 6 to pH 4, the Mn uptake by roots decreased to 43% of that at pH 6. These results suggest that low-pH-induced Mn deficiency promotes root hair formation. At low pH, the rate of Mn uptake was reduced in areas >2 mm from the root tip. Roots with low-pH-induced root hairs still showed low Mn uptake during 3 h of incubation at pH 6. Therefore, the additional root hairs induced by low pH did not compensate for the low-pH-induced decrease in Mn uptake  相似文献   

6.
Arabidopsis thaliana lacking phytochrome A, phytochrome B or both (double mutant) were analyzed by comparing their photoresponse with that of the wild type. Results indicate that root hair formation in Arabidopsis was strongly stimulated by light irradiation. Both phytochrome A and phytochrome B are responsible for photoinduction by continuous red light irradiation, while only phytochrome A mediates the response under continuous far-red light. The fluence response relationships to a red light pulse in the wild type displayed a biphasic trend similar to that previously observed in lettuce seedlings, with the first phase showing a sharp maximum at 78.3 Jm−2, and the second one operating over a wider fluence range (3,100–9,400 Jm−2) two orders of magnitude higher than the first one. Analysis of the fluence response curves for red light induction in the phytochrome mutants revealed that phytochrome A is responsible for the first phase in the wild type, while the second is the result of the combined action of both phytochrome A and phytochrome B. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

7.
莴苣胚囊发育为蓼型,减数分裂形成的4个大孢子中只有合点端的一个大孢子可继续发育,其余3个大孢子从珠孔端依次退化.大孢子母细胞中的钙沉淀颗粒很少,减数分裂后的四分体中的钙沉淀颗粒稍有增加.以后,4个大孢子中的钙沉淀颗粒在数量上有明显差异:即将退化的大孢子中钙明显减少,而未退化大孢子细胞质中则保持有较多的细小钙沉淀颗粒.大孢子的退化是一种细胞程序死亡现象,细胞中的钙浓度降低时可能启动了大孢子细胞的程序性死亡过程,而细胞中的钙浓度高时则保持大孢子细胞的继续发育.文章首次揭示了大孢子发生过程中钙的分布特征.  相似文献   

8.
The sensitivity of lettuce (Lactuca sativa L. cv Grand Rapids) seeds to red light was reduced by NaCl concentrations which had no effect upon the germination of continuously illuminated seeds. The germination capacity of the seeds was fully restored by increased red light exposures. Indirect evidence indicates that NaCl does not affect the photoconversion of red-absorbing form of phytochrome to the far-red absorbing form of phytochrome. Instead, the increased red light requirements are attributable to increases in the threshold levels of the far-red absorbing form of phytochrome necessary to induce germination and to changes in the slopes of the fluence-response curves. Results also show that the sensitivity of the seeds to NaCl decreased as the time between red light irradiation and the imposition of NaCl stress increased.  相似文献   

9.
TAUTVYDAS  K. J. 《Annals of botany》1979,44(4):503-509
The interaction of light, gibberellic acid (GA3), and phlorizinin the growth of lettuce (Lactuca sativa L. cv. ‘GrandRapids’) hypocotyls was investigated. At all concentrationsof GA3, phlorizin enhanced GA3-induced growth at luminous intensitiesabove 50 ft-c (continuous light). Without GA3, phlorizin hadno effect on hypocotyl growth in the light but it inhibitedgrowth in the dark. Both seedlings and hypocotyl sections respondedto phlorizin in the presence of GA3. There was no iteractionbetween phlorizin and KCl. Water-growth was severly inhibitedby light. GA3,-induced growth was slightly inhibited by light,and then only at luminous intensities above 50 ft-c. Thus, relativeto H2O-growth, GA3-induced growth increased with increasingluminous intensity up to 450 ft-c, where it reached saturation.It seems that a synergism may exist between light and GA3 aswell as between phlorizin and GA3. Lactuca sativa L, lettuce, hypocotyl elongation, gibberellic acid, phlorizin, light  相似文献   

10.
Results of studies on the interaction of blue light (B) and exogenous applied plant hormones (IAA, GA3 and ABA) as well as inhibitors of their synthesis on the control of hypocotyl elongation in etiolated seedlings of Lactuca sativa (L.) cv. Grand Rapids are presented, and compared with endogenous GA3, IAA and ABA levels measured by capillary gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). Hypocotyl elongation of etiolated seedlings was linearly inhibited by increasing the B fluence rate between 0 and 18.3 mol m–2 s–1. Both GA3 and IAA added to the incubation medium at different concentrations were able to eliminate partially the inhibition of growth caused by 7.2 mol m–2 s–1 B. When dark (D)-grown seedlings were treated with Ca-prohexadione, a specific inhibitor of gibberellin 3-hydroxylation, they showed a growth inhibition similar to under B. Also, a suppression of growth as in B was obtained when D-grown seedlings were treated with ABA 380 M. By lowering ABA levels with fluridone (an inhibitor of ABA synthesis) a partial reversion of hypocotyl growth inhibition was obtained in B-grown seedlings. While none of the growth promoters used were able to reverse completely the growth inhibition caused by B, a proper combination of GA3, IAA and (eventually) fluridone, abolished the B effects. Correspondingly, lower levels of GA3 and IAA and a higher concentration of ABA were measured by GC-MS-SIM in B-grown hypocotyls than in D-grown ones. These results support the hypothesis that hormones are implicated in mediation of B light-dependent inhibition of hypocotyl elongation, which seems to be the result of a balance among endogenous levels of growth promoting and growth inhibiting hormones.  相似文献   

11.
莴苣胚囊细胞分离   总被引:3,自引:0,他引:3  
用酶解和解剖方法分离了莴苣的卵细胞,助细胞,中央细胞和合子。莴苣子房先在酶液中酶解40~50min,然后在不含酶的分离液中用解剖针解剖子房。在解剖出的胚囊中,可看到卵细胞,两个助细胞和中央细胞的轮廓。将胚囊的合点端切破,轻轻挤压胚囊的珠孔端,四个细胞即可逸出。在最佳条件下,90min可从40个子房中分离出29个胚囊,进一步从中分离出11个卵细胞。分离出的胚囊细胞用显微操作仪收集备用。莴苣卵细胞的成功分离为进行离体受精探索创造了条件。  相似文献   

12.
13.
The timing of mobilisation of lipid, sucrose, raffinose and phytate in lettuce seeds (achenes) (cv. Grand Rapids) has been examined. These reserves (33%, 1.5%, 0.7%, 1.4% of achene dry weight, respectively) are stored mostly in the cotyledons. Except for a slight degradation of raffinose and increase in sucrose, there is no detectable reserve mobilisation during germination. The endosperm (8% of seed dry weight), which has thick, mannan-containing cell walls (carbohydrate, 3,4% of seed dry weight), is completely degraded within about 15h following germination. Mannanase activity increases about 100-fold during the same period and arises in all regions of the endosperm. Also during this period sucrose and raffinose are degraded and fructose and glucose accumulate in the embryo. The endosperm hydrolysis products are taken up by the embryo, and are probably used as an additional reserve to support early seedling growth. However, endosperm cell-wall carbohydrates, such as mannose, are not found as free sugars. Lipid and phytate are degraded in a later, second phase of mobilisation. Low levels of sucrose are present in the embryo, mostly in the cotyledons, and large amounts of fractose and glucose (14% of seedling dry weight at 3 days after sowing) accumulate in the hypocotyl and radicle. It is suggested that sucrose, produced in the cotyledons by gluco-neogenesis, is translocated to the axis and converted there to fructose and glucose.  相似文献   

14.
In the light, transfer of lettuce seedlings precultured on liquid medium at pH 6.0 to fresh medium at pH 4.0 induces root hair formation. However, no root hairs form in the dark. Here, we investigated how light induces root hair formation. Randomization of the transverse cortical microtubule (CMT) arrays which occurs in root epidermal cells in the light prior to root hair initiation was not observed in the dark. However, addition of indole-3-acetic acid (IAA) or 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair formation. In these cases, CMT randomization occurred in almost the same time-dependent manner as under light. However, root hair initiation was delayed for several hours in the dark. These results suggest that light promotes CMT randomization and root hair initiation via auxin and ethylene signaling but light additionally influences root hair initiation independently of these signaling mechanisms. Furthermore, addition of a microtubule-depolymerizing drug in the dark disrupted the transverse CMT arrays and initiated root hair formation; however, root hair elongation was still suppressed. Root hairs elongated when IAA or ACC was applied with the drug. These results suggest that light also promotes root hair elongation via auxin and ethylene signaling.  相似文献   

15.
The production of mannanase, a cell-wall-degrading carbohydrase, can be manipulated in isolated lettuce (Lactuca sativa cv Grand Rapids) endosperms by changes in the volume of buffer in which they are incubated. The enzyme is produced when endosperms are incubated in a large volume, but not when incubated in a small volume, which is suggestive that an endogenous, diffusible inhibitor of mannanase production is being lost from the endosperms in a large volume (JD Bewley, P Halmer 1980/1981 Israel J Bot 29: 118-132). We have investigated the possibility that the phytohormone abscisic acid (ABA) is involved in this regulation of mannanase production in isolated lettuce endosperms. We find several correlations between the presence of the endogenous inhibitor and of ABA, i.e. (a) a `leachate' prepared from isolated lettuce endosperms induces synthesis of ABA-specific proteins in barley aleurone layers, indicating that incubation of endosperms in a large volume results in the diffusion of ABA therefrom into the surrounding medium; (b) fractionation of the components of a leachate by either polyvinylpyrrolidone-chromatography of C18 reversed-phase high performance liquid chromatography fails to separate the endogenous inhibitor from authentic ABA; and (c) changes in the incubation volume of endosperms result in changes in the amount of extractable ABA in the endosperms, as detected by ELISA. These results are consistent with a role for endogenous ABA in the regulation of mannanase production in isolated lettuce endosperms.  相似文献   

16.
Ferulic acid (FA) is released by living roots and by decaying plant material and is involved in chemical interactions between plants. Effects of FA on plant growth and root development of lettuce (Lactuca sativa L. cv. Grand Rapids) cultivated in axenic nutrient solution were studied in two factorial experiments. Root and shoot growth was impeded when 200 M trans-FA was added to the nutrient solution and the light intensity was in the range of 250–380 mol m-2 s-1. Root growth showed a stronger response to FA than did shoot growth. At 200 M, FA strongly inhibited root hair formation and reduced mean lengths of primary, secondary and tertiary roots, but stimulated primary and secondary root branching. Both isomerization to the cis isomer and the presence of the plant reduced the concentration of trans-FA in the nutrient solution during the two weeks exposure period. A third experiment was conducted to assess the influence of irradiance on the phytotoxicity of FA. At a light intensity of 489 mol m-2 s-1, or in the presence of microorganisms, the concentration of FA in the nutrient solution was lowered and the phytotoxic effects were reduced.  相似文献   

17.
NOTHAMANN  J. 《Annals of botany》1976,40(5):1067-1072
The morphology of hearting of cos lettuce was investigated.Two main factors seem to be involved: (1) massive accumulationof successive leaves of similar length in the central part ofthe developing head, and (2) progressive, inwardly-directedfolding of leaves beginning from the outside and including mostleaves of similar length, the compact and firm structure causedby one leaf enclosing tightly the following one. No major changes in the shape of individual leaves, other thancurvature, were observed, as midrib and leafblade extended ata similar rate throughout the growing period. Differences in the heading process between cos and head lettuceare discussed.  相似文献   

18.
NOTHAMANN  J. 《Annals of botany》1976,40(5):1073-1077
The morphogenesis of a malformation occurring in cos lettuceheads (Lactuca sativa L. cv. romana) during and at the end ofthe heading period, is described. Abnormal leaf growth resultedin twisting of the midrib of the affected leaf around its ownaxis, giving the leaf a spiral-like look. Twisting began atthe outer leaves and then, mainly by affecting successive orsometimes alternating leaves, spread inwards in the directionto the younger leaves. Accelerated midrib elongation accompaniedleaf twisting. The external appearance of this malformationwas influenced by the location and number of the twisted leaves,and by the degree of twisting of the individual leaves.  相似文献   

19.
20.
水稻原品种"大力"以NaN3诱变方法获得了稳定突变体RM109.显微结构观察表明,RM109种子根外表根毛稀少且短小,无侧根发生,而"大力"品种则有侧根发生,且密生根毛.根毛观察比较显示,距种子根根端1 cm处的RM109根毛数是"大力"品种的19%,差异极显著,根直径与"大力"品种差异不显著;距根端8 cm处的RM109根毛数和根直径分别是"大力"品种的45%和79%,二者差异极显著;距根端3 cm处,RM109最大根毛长是"大力"品种的33%,差异极显著;RM109种子根根端到根毛发生区的长度,与"大力"品种的差异不显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号