首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function.  相似文献   

2.
3.
4.
Lam P  Zhao L  McFarlane HE  Aiga M  Lam V  Hooker TS  Kunst L 《Plant physiology》2012,159(4):1385-1395
The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).  相似文献   

5.
ABCG11/WBC11, an ATP binding cassette (ABC) transporter from Arabidopsis thaliana, is a key component of the export pathway for cuticular lipids. Arabidopsis wbc11 T-DNA insertional knock-out mutants exhibited lipidic inclusions inside epidermal cells similar to the previously characterized wax transporter mutant cer5, with a similar strong reduction in the alkanes of surface waxes. Moreover, the wbc11 knock-out mutants also showed defects not present in cer5, including post-genital organ fusions, stunted growth and a reduction in cutin load on the plant surface. A mutant line previously isolated in a forward genetics screen, called permeable leaves 1 (pel1), was identified as an allele of ABCG11/WBC11. The double knock-out wbc11 cer5 exhibited the same morphological and biochemical phenotypes as the wbc11 knock-out. A YFP-WBC11 fusion protein rescued a T-DNA knock-out mutant and was localized to the plasma membrane. These results show that WBC11 functions in secretion of surface waxes, possibly by interacting with CER5. However, unlike ABCG12/CER5, ABCG11/WBC11 is important to the normal process of cutin formation.  相似文献   

6.
We present cuticular wax chemical profiles for the leaves and stems of Arabidopsis wildtype Landsberg erecta and eleven isogenic eceriferum mutants: cer5, cer10 to cer15, and cer17 to cer20. These cer mutants have wax profiles that are different from those of wildtype in chemical chain length distribution, amount per chemical class, and/or total wax load. Analyses of detailed leaf and stem wax profiles for these cer mutants have allowed us to place some of these mutants at specific steps in wax production. The cer13 gene is predicted to affect release of the 30 carbon fatty acid from the elongation complex or the reduction of C30 fatty acid to C30 aldehyde. The CER19 gene product is predicted to be involved in C28 to C30 fatty acyl-CoA elongation. The CER20 gene is predicted to affect the oxidation of C29 alkane to C29 secondary alcohol. Several predicted gene products affect only stem specific steps in the wax pathway.  相似文献   

7.
8.
The aerial organs of plants are covered with a cuticle, a continuous layer overlaying the outermost cell walls of the epidermis. The cuticle is composed of two major classes of the lipid biopolymers: cutin and waxes, collectively termed cuticular lipids. Biosynthesis and transport of cuticular lipids occur predominantly in the epidermis cells. In the transport pathway, cuticular lipids are exported from their site of biosynthesis in the ER/plastid to the extracellular space through the plasma membrane and cell wall. Growing evidence suggests that ATP-binding cassette (ABC) transporters are implicated in transport of cuticular lipids across the plasma membrane of epidermal cells. The Arabidopsis ABC-type transporter protein CER5 (WBC12) was reported to act as a wax monomers transporter. In recent works, our group and others showed that a CER5-related protein, DESPERADO (DSO/WBC11), is required for cutin and wax monomers transport through the plasma membrane of Arabidopsis epidermis cells. Unlike the cer5 mutant, DSO loss-of-function had a profound effect on plant growth and development, particularly dwarfism, postgenital organ fusions, and altered epidermal cell differentiation. The partially overlapping function of CER5 and DSO and the fact that these proteins are half-size ABC transporters suggest that they might form a hetero-dimeric complex while transporting wax components. An intriguing observation was the polar localization of DSO in the distal part of epidermis cells. This polar expression might be explained by DSO localization within lipid rafts, specific plasma membrane microdomains which are associated with polar protein expression. In this review we suggest possible mechanisms for cuticular lipids transport and a link between DSO function and polar expression. Furthermore, we also discuss the subsequent transport of cuticular constituents through the hydrophobic cell wall and the possible involvement of lipid transfer proteins in this process.Key words: ABC transporter, cuticular lipids, polar expression, plasma membrane, epidermis  相似文献   

9.
10.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

11.
The aerial parts of plants are coated with an epicuticular wax layer, which is important as a first line of defense against external influences. In Arabidopsis, the ECERIFERUM (CER) genes effect different steps of the wax biosynthesis pathway. In this article, we describe the isolation of the CER1 gene, which encodes a novel protein involved in the conversion of long chain aldehydes to alkanes, a key step in was biosynthesis. CER1 was cloned after gene tagging with the heterologous maize transposable element system Enhancer-Inhibitor, also known as Suppressor-mutator. cer1 mutants display glossy green stems and fruits and are conditionally male sterile. The similarity of the CER1 protein with a group of integral membrane enzymes, which process highly hydrophobic molecules, points to a function of the CER1 protein as a decarbonylase.  相似文献   

12.
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.  相似文献   

13.
Y Xia  B J Nikolau    P S Schnable 《The Plant cell》1996,8(8):1291-1304
Cuticular waxes are complex mixtures of very long chain fatty acids and their derivatives that cover plant surfaces. Mutants of the ECERIFERUM2 (cer2) gene of Arabidopsis condition bright green stems and siliques, indicative of the relatively low abundance of the cuticular wax crystals that comprise the wax bloom on wild-type plants. We cloned the CER2 gene via chromosome walking. Three lines of evidence establish that the cloned sequence represents the CER2 gene: (1) this sequence is capable of complementing the cer2 mutant phenotype in transgenic plants; (2) the corresponding DNA sequence isolated from plants homozygous for the cer2-2 mutant allele contains a sequence polymorphism that generates a premature stop codon; and (3) the deduced CER2 protein sequence exhibits sequence similarity to that of a maize gene (glossy2) that also is involved in cuticular wax accumulation. The CER2 gene encodes a novel protein with a predicted mass of 47 kD. We studied the expression pattern of the CER2 gene by in situ hybridization and analysis of transgenic Arabidopsis plants carrying a CER2-beta-glucuronidase gene fusion that includes 1.0 kb immediately upstream of CER2 and 0.2 kb of CER2 coding sequences. These studies demonstrate that the CER2 gene is expressed in an organ- and tissue-specific manner; CER2 is expressed at high levels only in the epidermis of young siliques and stems. This finding is consistent with the visible phenotype associated with mutants of the CER2 gene. Hence, the 1.2-kb fragment of the CER2 gene used to construct the CER2-beta-glucuronidase gene fusion includes all of the genetic information required for the epidermis-specific accumulation of CER2 mRNA.  相似文献   

14.
Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across primary plant surfaces. The astomatous tomato fruit is an ideal model system that permits the functional characterization of intact cuticular membranes and therefore allows direct correlation of their permeance for water with their qualitative and quantitative composition. The recessive positional sterile (ps) mutation, which occurred spontaneously in tomato (Solanum lycopersicum L.), is characterized by floral organ fusion and positional sterility. Because of a striking phenotypical similarity with the lecer6 wax mutant of tomato, which is defective in very-long-chain fatty acid elongation, ps mutant fruits were analyzed for their cuticular wax and cutin composition. We also examined their cuticular permeance for water following the developmental course of fruit ripening. Wild type and ps mutant fruits showed considerable differences in their cuticular permeance for water, while exhibiting similar quantitative wax accumulation. The ps mutant fruits showed a five- to eightfold increase in water loss per unit time and surface area when compared to the corresponding wild type fruits. The cuticular waxes of ps mutant fruits were characterized by an almost complete absence of n-alkanes and aldehydes, with a concomitant increase in triterpenoids and sterol derivatives. We also noted the occurrence of alkyl esters not present in the wild type. Quantitative and qualitative cutin monomer composition remained largely unaffected. The significant differences in the cuticular wax composition of ps mutant fruits induced a distinct increase of cuticular water permeance. The fruit wax compositional phenotype indicates the ps mutation is responsible for effectively blocking the decarbonylation pathway of wax biosynthesis in epidermal cells of tomato fruits.  相似文献   

15.
Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis   总被引:4,自引:0,他引:4  
Wild-type Arabidopsis leaf epicuticular wax (EW) occurs as a smooth layer over the epidermal surface, whereas stem EW has a crystalline microstructure. Wild-type EW load was more than 10-fold lower on leaves than on stems. Compared with the EW on wild-type stems, EW on wild-type leaves had a much higher proportion of their total EW load in the form of alkanes and 1-alcohols; a large reduction in secondary alcohols, ketones, and esters; and a chain-length distribution for major EW classes that was skewed toward longer lengths. The eceriferum (cer) mutations often differentially affected leaf and stem EW chemical compositions. For example, the cer2 mutant EW phenotype was expressed on the stem but not on the leaf. Compared to wild type, the amount of primary alcohols on cer9 mutants was reduced on leaves but elevated on stems, whereas an opposite differential effect for primary alcohols was observed on cer16 leaves and stems. Putative functions for CER gene products are discussed. The CER4 and CER6 gene products may be involved in fatty aldehyde reduction and C26 fatty acylcoenzyme A elongation, respectively. CER1, CER8, CER9, and CER16 gene products may be involved in EW substrate transfer. The CER3 gene product may be involved in release of fatty acids from elongase complexes. CER2 gene product may have regulatory functions.  相似文献   

16.
17.
18.
Xiao F  Goodwin SM  Xiao Y  Sun Z  Baker D  Tang X  Jenks MA  Zhou JM 《The EMBO journal》2004,23(14):2903-2913
Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces.  相似文献   

19.
David A. Bird   《Plant science》2008,174(6):563-569
The aerial surfaces of plants are enveloped by a waxy cuticle, which among other functions serves as a barrier to limit non-stomatal water loss and defend against pathogens. The cuticle is a complex three-dimensional structure composed of cutin (a lipid polyester matrix) and waxes (very long chain fatty acid derivatives), which are embedded within and layered on top of the cutin matrix. Biosynthesis of cuticular lipids is believed to take place solely within aerial epidermal cells. Once synthesized, both the waxes and the cutin precursors must leave the cytoplasm, pass through the hydrophilic apoplastic space, and finally assemble to form the cuticle. These processes of secretion and assembly are essentially unknown. Initial steps toward our understanding of these processes were the characterization of CER5/ABCG12/WBC12 and more recently ABCG11/WBC11, a pair of ABC transporters required for cuticular lipid secretion. ABCG12 is involved in wax secretion, as mutations in this gene result in a lower surface-load of wax and a concomitant accumulation of lipidic inclusions within the epidermal cell cytoplasm. Mutations in ABCG11 result in a similar wax phenotype as cer5 and similar cytoplasmic inclusions. In contrast to cer5, however, abcg11 mutants also show significantly reduced cutin, post-genital organ fusions, and reduced growth and fertility. Thus, for the first time, a transporter is implicated in cutin accumulation. This review will discuss the secretion of cuticular lipids, focusing on ABCG12, ABCG11 and the potential involvement of other ABC transporters in the ABCG subfamily.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号