首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125.  相似文献   

2.
A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70°C and pH 9, respectively. It was stable up to 65°C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na+, Ca2+, Mn2+, K+ and Mg2+ , but inhibited by Cu2+, Fe3+ and Zn2+. Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10–C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T m for T1 lipase was around 72.2°C, as revealed by denatured protein analysis of CD spectra.  相似文献   

3.
利用易错PCR技术对短小芽胞杆菌(Bacillus pumilus)YZ02脂肪酶基因BpL进行两轮定向进化研究, 分别获得最佳突变株BpL1-7和BpL2-1369, 其脂肪酶活力比出发酶分别提高了2倍和6倍。序列分析表明, 突变体BpL2-1369有4个碱基发生了突变: T61C/C147T/A334G/T371A, 其中有3个碱基突变导致了氨基酸的改变。通过SWISS-MODEL数据库模拟脂肪酶的结构显示, 3个突变氨基酸分别位于第1个a螺旋的第3个氨基酸、第4和第5个b折叠之间的转角以及第5个b折叠的第1个氨基酸位置。将野生型脂肪酶基因BpL和进化后的基因BpL2-1369的高效表达产物经Ni-Agarose柱和Sephadex-G75纯化后, 酶学性质测定表明: 突变脂肪酶的比活力比野生型脂肪酶提高了1.31倍, Km值由8.24 mmol/L降低至7.17 mmol/L; 在pH>8.0时的稳定性较野生型脂肪酶有所提高。  相似文献   

4.
An expression library was generated from a partial NcoI and HindIII digest of genomic DNA from the thermophilic bacterium, Bacillus stearothermophilus P1. The DNA fragments were cloned into the expression vector pQE-60 and transformed into Escherichia coli M15[EP4]. Sequence analysis of a lipase gene showed an open reading frame of 1254 nucleotides coding a 29-amino-acid signal sequence and a mature sequence of 388 amino acids. The expressed lipase was isolated and purified to homogeneity in a single chromatographic step. The molecular mass of the lipase was determined to be approximately 43 kDa by SDS-PAGE and mass spectrometry. The purified lipase had an optimum pH of 8.5 and showed maximal activity at 55 degrees C. It was highly stable in the temperature range of 30-65 degrees C. The highest activity was found with p-nitrophenyl ester-caprate as the synthetic substrate and tricaprylin as the triacylglycerol. Its activity was strongly inhibited by 10 mM phenylmethanesulfonyl fluoride and 1-hexadecanesulfonyl chloride, indicating that it contains a serine residue which plays a key role in the catalytic mechanism. In addition, it was stable for 1 h at 37 degrees C in 0.1% Chaps and Triton X-100.  相似文献   

5.
A major extracellular endoglucanase purified to homogeneity from Thermoascus aurantiacus had a M(r) of 34 kDa and a pI of 3.7 and was optimally active at 70-80 degrees C and pH 4.0-4.4. It was stable at pH 2.8-6.8 at 50 degrees C for 48 h and maintained its secondary structure and folded conformation up to 70 degrees C at pH 5.0 and 2.8, respectively. A 33-amino acid sequence at the N terminus showed considerable homology with 14 microbial endoglucanases having highly conserved 8 amino acids (positions 10-17) and Gly, Pro, Gly, and Pro at positions 8, 22, 23, and 32, respectively. The enzyme is rich in Asp (15%) and Glu (10%) with a carbohydrate content of 2.7%. Polyclonal antibodies of endoglucanase cross-reacted with their own antigen and with other purified cellulases from T. aurantiacus. The endoglucanase was specific for polymeric substrates with highest activity toward carboxymethyl cellulose followed by barley beta-glucan and lichenan. It preferentially cleaved the internal glycosidic bonds of Glc(n) and MeUmbGlc(n) and possessed an extended substrate-binding site with five subsites. The data indicate that the endoglucanase from T. aurantiacus is a member of glycoside hydrolase family 5.  相似文献   

6.
A novel lipase-producing thermophilic strain TW1, assigned to Geobacillus sp. TW1 based on 16S rRNA sequence, was isolated from a hot spring in China. Based on this strain, a lipase gene encoding 417 amino acids was cloned. Subsequently, the lipase gene was expressed in Escherichia coli and purified as a fusion protein with glutathione S-transferase. The results showed that the recombinant lipase had an activity optimum at 40 degrees C and pH at 7.0-8.0. It was active up to 90 degrees C at pH 7.5, and stable over a wide pH ranging from 6.0 to 9.0. The recombinant lipase was stable in 1 mM enzyme inhibitors (EDTA, 2-ME, SDS, PMSF or DTT), as well as in 0.1% detergents (Tween 20, Chaps or Triton X-100). Its catalytic function was enhanced in the presence of Ca(2+), Mg(2+), Zn(2+), Fe(2+) or Fe(3+), but inhibited by Cu(2+), Mn(2+), and Li(+). By comparison with the crude lipase, the recombinant lipase had similar properties and was characteristic of thermostable enzymes. Our study presented a rapid overexpression and purification of the lipase gene from thermophile, aimed at improving the enzyme yield for industrial applications.  相似文献   

7.
A Penicillium simplicissimum strain has been found to produce an inducible extracellular lipase. Triolein was the best inducer for the enzyme production with the highest activity being achieved after 48 h of incubation. The purified lipase showed a molecular weight of 56,000 by SDS-PAGE. The enzyme exhibited a high ratio of apolar amino acids. The lipase was stable in the pH range of 5-7 and at 50 degrees C for 15 min. The optimum assay conditions were 37 degrees C and pH 5.0. The enzyme showed a high stability in water immiscible organic solvents. Lipase from P. simplicissimum is nonspecific and hydrolyses each of the three bonds of triacylglycerols.  相似文献   

8.
Alpha-D-glucuronidases cleave the alpha-1,2-glycosidic bond of the 4-O-methyl-D-glucuronic acid side chain of xylan, as a part of an array of xylan hydrolyzing enzymes. The alpha-D-glucuronidase from Bacillus stearothermophilus T-6 was overexpressed in Escherichia coli using the T7 polymerase expression system. The purification procedure included two steps, heat treatment and gel filtration chromatography, and provided over 0.3 g of pure enzyme from 1 L of overnight culture. Based on gel filtration, the native protein is comprised of two identical subunits. Kinetic constants with aldotetraouronic acid as a substrate, at 55 degrees C, were a Km of 0.2 mM, and a specific activity of 42 U x mg(-1) (kcat = 54.9 s(-1)). The enzyme was most active at 65 degrees C, pH 5.5-6.0, in a 10-min assay, and retained 100% of its activity following incubation at 70 degrees C for 20 min. Based on differential scanning calorimetry, the protein denatured at 73.4 degrees C. Truncated forms of the enzyme, lacking either 126 amino acids from its N-terminus or 81 amino acids from its C-terminus, exhibited low residual activity, indicating that the catalytic site is located in the central region of the protein. To identify the potential catalytic residues, site-directed mutagenesis was applied on highly conserved acidic amino acids in the central region. The replacements Glu392-->Cys and Asp364-->Ala resulted in a decrease in activity of about five orders of magnitude, suggesting that these residues are the catalytic pair.  相似文献   

9.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

10.
A branching enzyme (EC 2.4.1.18) gene was isolated from an extremely thermophilic bacterium, Rhodothermus obamensis. The predicted protein encodes a polypeptide of 621 amino acids with a predicted molecular mass of 72 kDa. The deduced amino acid sequence shares 42-50% similarity to known bacterial branching enzyme sequences. Similar to the Bacillus branching enzymes, the predicted protein has a shorter N-terminal amino acid extension than that of the Escherichia coli branching enzyme. The deduced amino acid sequence does not appear to contain a signal sequence, suggesting that it is an intracellular enzyme. The R. obamensis branching enzyme was successfully expressed both in E. coli and a filamentous fungus, Aspergillus oryzae. The enzyme showed optimum catalytic activity at pH 6.0-6.5 and 65 degrees C. The enzyme was stable after 30 min at 80 degrees C and retained 50% of activity at 80 degrees C after 16 h. Branching activity of the enzyme was higher toward amylose than toward amylopectin. This is the first thermostable branching enzyme isolated from an extreme thermophile.  相似文献   

11.
The paper describes the purification, biochemical characterization, sequence determination, and classification of a novel thermophilic hydrolase from Thermobifida fusca (TfH) which is highly active in hydrolyzing aliphatic-aromatic copolyesters. The secretion of the extracellular enzyme is induced by the presence of aliphatic-aromatic copolyesters but also by adding several other esters to the medium. The hydrophobic enzyme could be purified applying a combination of (NH(4))SO(4)-precipitation, cation-exchange chromatography, and hydrophobic interaction chromatography. The 28 kDa enzyme exhibits a temperature maximum of activity between 65 and 70 degrees C and a pH maximum between pH 6 and 7 depending on the ion strength of the solution. According to the amino sequence determination, the enzyme consists of 261 amino acids and was classified as a serine hydrolase showing high sequence similarity to a triacylglycerol lipase from Streptomyces albus G and triacylglycerol-aclyhydrolase from Streptomyces sp. M11. The comparison with other lipases and esterases revealed the TfH exhibits a catalytic behavior between a lipase and an esterase. Such enzymes often are named as cutinases. However, the results obtained here show, that classifying enzymes as cutinases seems to be generally questionable.  相似文献   

12.
链霉菌Z94-2碱性脂肪酶产生条件及酶学性质   总被引:2,自引:0,他引:2  
在152株脂肪酶产生菌中,链霉菌Z94-2产脂肪酶活力为596u/mL,其最适培养基(g/L)为:糊精10、黄豆饼粉30、尿素10、K2HPO40.5、MgSO40.5、NaCl1和AEO90.5,产酶的最适条件为:初始pH9.5~10.0,在26℃培养48h。用PVA橄榄油乳化系统测定该酶的最适pH9.8,最适温度37℃,在pH8.6~10.2于5℃存放24h,酶活力不变。0.14mol/L的氯  相似文献   

13.
The thermotolerant yeast Candida thermophila SRY-09 isolated from Thailand produces an extracellular lipase that hydrolyses various triglycerides. To clone the gene encoding the lipase, Saccharomyces cerevisiae was transformed with a C. thermophila genomic library and screened for lipase activity on medium containing olive oil emulsion and rhodamine B. One C. thermophila lipase gene (CtLIP) was found that contained an ORF of 1317 bp encoding a deduced polypeptide of 438 amino acids. Candida thermophila lipase contained a Gly-Asp-Ser-Gln-Gly motif which matched the consensus Gly-X-Ser-X-Gly conserved among lipolytic enzymes. Heterologous expression of the cloned CtLIP under the control of the alcohol oxidase gene (AOX1) promoter in the methylotrophic yeast Pichia pastoris, and enzymatic measurements confirmed the function of the respective protein as a lipase. The recombinant CtLIP could hydrolyse various substrates at high temperature (55 degrees C) with higher efficiency than at 37 or 45 degrees C and preferentially hydrolysed two-positional ester bonds. As with C. thermophila, the heterologously expressed lipase was secreted into the medium by Pichia pastoris.  相似文献   

14.
A thermostable lipase from Pseudomonas cepacia has been purified to homogeneity as judged by SDS-PAGE and isoelectric focusing. The purification included treatment of the culture supernatant with acrinol, hydrophobic interaction chromatography, and gel filtration. The enzyme was a monomeric protein with M(r) of 36,500 and pI of 5.1. The optimal pH at 50 degrees C and optimal temperature at pH 6.5 were 5.5-6.5 and 55-60 degrees C, respectively, when olive oil was used as the substrate. Simple triglycerides of short and middle chain fatty acids (C < or = 12) were the preferred substrates over those of long chain fatty acids. The enzyme cleaved all the ester bonds of triolein, with some preference for the 1,3-ester bonds. The enzyme retained all its activity even after incubation at 75 degrees C (pH 6.5) for 30 min. Further, the activity was not impaired during 21 h storage at pH 6.5 in 40% water-miscible solvents including methanol, ethanol, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, and dioxane. The addition of dimethylsulfoxide or acetone to the assay mixture in the range of 0-35% stimulated the enzyme, whereas benzene or n-hexane had an inhibitory effect. These properties together with the N-terminal amino acid sequence confirmed that the enzyme differs from the known Pseudomonas sp. lipases.  相似文献   

15.
Sayari A  Mejdoub H  Gargouri Y 《Biochimie》2000,82(2):153-159
Turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Pure TPL (glycerol ester hydrolase, EC 3.1.1.3) was obtained after ammonium sulfate fractionation, Sephacryl S-200 gel filtration, anion exchange chromatography (DEAE-Sepharose) and size exclusion column using high performance liquid chromatography system (HPLC). The pure lipase, which is not a glycoprotein, was presented as a monomer having a molecular mass of about 45 kDa. The lipase activity was maximal at pH 8.5 and 37 degrees C. TPL hydrolyses the long chains triacylglycerols more efficiently than the short ones. A specific activity of 4300 U/mg was measured on triolein as substrate at 37 degrees C and at pH 8.5 in the presence of colipase and 4 mM NaTDC. This enzyme presents the interfacial activation when using tripropionin as substrate. TPL was inactivated when the enzyme was incubated at 65 degrees C or at pH less than 5. Natural detergent (NaTDC), synthetic detergent (Tween-20) or amphipatic protein (beta-lactoglobulin A) act as potent inhibitors of TPL activity. To restore the lipase activity inhibited by NaTDC, colipase should be added to the hydrolysis system. When lipase is inhibited by synthetic detergent or protein, simultaneous addition of colipase and NaTDC was required to restore the TPL activity. The first 22 N-terminal amino acid residues were sequenced. This sequence was similar to those of mammal's pancreatic lipases. The biochemical properties of pancreatic lipase isolated from bird are similar to those of mammals.  相似文献   

16.
Extracellular Corynebacterium lipase was produced using a 2.5 L Chemap fermentor using 1300 ml fermentation medium at temperature 33 degrees C, agitator speed 50 rpm, aeration rate 1 VVM having KLa 16.21 hr(-1). Crude lipase was purified by salting out method followed by dialysis and immobilized using calcium alginate gel matrix followed by glutaraldehyde cross linking Purification process increased specific activity of enzyme from 2.76 to 114.7 IU/mg. Activity of immobilized enzyme was 107.31 IU/mg. Optimum temperature for purified and immobilized enzyme activity were 65 degrees and 50 degrees C respectively. Optimum pH was 8.0 in both the cases, Km and Vmax value for purified lipase were 111.1 micromol/min and 14.7% respectively. Ca2+ (5 mM) was found to be stimulator for enzyme activity. Immobilized lipase retained 68.18% of the original activity when stored for 40 days.  相似文献   

17.
We have isolated a lipolytic strain from palm fruit that was identified as a Rhizopus oryzae. Culture conditions were optimized and highest lipase production amounting to 120 U/ml was achieved after 4 days of cultivation. The extracellular lipase was purified 1200-fold by ammonium sulfate precipitation, sulphopropyl-Sepharose chromatography, Sephadex G 75 gel filtration and a second sulphopropyl-Sepharose chromatography. The specific activity of the purified enzyme was 8800 U/mg. The lipolytic enzyme has a molecular mass of 32 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration. The enzyme exhibited a single band in active polyacrylamide gel electrophoresis and its isoelectric point was 7.6. Analysis of Rhizopus oryzae lipase by RP-HPLC confirmed the homogeneity of the enzyme preparation. Determination of the N-terminal sequence over 19 amino acid residues showed a high homology with lipases of the same genus. The optimum pH for enzyme activity was 7.5. Lipase was stable in the pH range from 4.5 to 7.5. The optimum temperature for lipase activity was 35 degrees C and about 65% of its activity was retained after incubation at 45 degrees C for 30 min. The lipolytic enzyme was inhibited by Triton X100, SDS, and metal ions such as Fe(3+), Cu(2+), Hg(2+) and Fe(2+). Lipase activity against triolein was enhanced by sodium cholate or taurocholate. The purified lipase had a preference for the hydrolysis of saturated fatty acid chains (C(8)-C(18)) and a 1, 3-position specificity. It showed a good stability in organic solvents and especially in long chain-fatty alcohol. The enzyme poorly hydrolyzed triacylglycerols containing n-3 polyunsaturated fatty acids, and appeared as a suitable biocatalyst for selective esterification of sardine free fatty acids with hexanol as substrate. About 76% of sardine free fatty acids were esterified after 30 h reaction whereas 90% of docosahexaenoic acid (DHA) was recovered in the unesterified fatty acids.  相似文献   

18.
A total of 118 halophilic archaeal collection of strains were screened for lipolytic activity and 18 of them were found positive on Rhodamine agar plates. The selected five isolates were further characterized to determine their optimum esterase and lipase activities at various ranges of salt, temperature and pH. The esterase and lipase activities were determined by the hydrolysis of pNPB and pNPP, respectively. The maximum hydrolytic activities were found in the supernatants of the isolates grown at complex medium with 25% NaCl and 1% gum Arabic. The highest esterase activity was obtained at pH 8-8.5, temperature 60-65 degrees C and NaCl 3-4.5 M. The same parameters for the highest lipase activities were found to be pH 8, temperature 45-65 degrees C and NaCl 3.5-4 M. These results indicate the presence of salt-dependent and temperature-tolerant lipolytic enzymes from halophilic archaeal strains. Kinetic parameters were determined according to Lineweaver-Burk plot. The KM and V (max) values were lower for pNPP hydrolysis than those for pNPB hydrolysis. The results point that the isolates have higher esterase activity comparing to lipase activity.  相似文献   

19.
A collagenase in the culture supernatant of B. subtilis FS-2, isolated from traditional fish sauce, was purified. The enzyme had a molecular mass of about 125 kDa. It degraded gelatin with maximum activity at pH 9 and a temperature of 50 degrees C. The purified enzyme was stable over a wide range of pH (5-10) and lost only 15% and 35% activity after incubation at 60 degrees C and 65 degrees C for 30 min, respectively. Slightly inhibited by EDTA, soybean tripsin inhibitor, iodoacetamide, and iodoacetic acid, the enzyme was severely inhibited by 2-beta-mercaptoethanol and DFP. The protease from B. subtilis FS-2 culture digested acid casein into fragments with hydrophilic and hydrophobic amino acids as C-terminals, in particular Asn, Gly, Val, and Ile.  相似文献   

20.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号