首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jeon H  Park S  Choi J  Jeong G  Lee SB  Choi Y  Lee SJ 《Current microbiology》2011,62(5):1390-1399
As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds.  相似文献   

2.
Helicoverpa armigera, a highly polyphagous pest, has a broad host spectrum, causes significant levels of yield loss in many agriculturally important crops. Serine primarily responsible for most of the proteolytic activity in the larval gut of lepidopteron insects. Neonate larvae were reared on artificial diet and chickpea seeds smeared with Subabul Trypsin Inhibitor. Larvae fed with artificial diet showed reduction in larval weight up to 21% (HSTI) and 43% (LSTI). However, larvae fed on seeds showed significant reduction in weight, 52.4% (HSTI) and 60.3% (LSTI), suggesting that the diet also plays a vital role on the effectiveness of the inhibitors on larval growth and development. HSTI and LSTI inhibited the gut proteinases from larvae fed on artificial diet significantly (41.40% and 64.36%) compared to the gut proteinases (27.80% and 38.90%) from larvae fed on chickpea seeds. Seeds smeared with 10,000 TIU resulted in complete mortality of larvae while there was no mortality observed in artificial diet. The results reveal that LSTI is a stronger inhibitor of insect gut proteinases and for larvae fed with poor nutrition in the natural ecosystems, low level expression of inhibitor would be enough to affect the growth and development. Handling editor: Chen-Zhu Wang  相似文献   

3.
【背景】废旧塑料聚乙烯因具有较高的化学惰性,不易被自然降解而形成长期污染。【目的】探究聚乙烯泡沫塑料对大麦虫生长发育的影响,为大麦虫作为降解聚乙烯泡沫塑料的昆虫推广提供理论依据。【方法】以大麦虫幼虫为研究对象,选用常见的泡沫塑料(聚乙烯),采用4种不同的饲喂方式T1 (麦麸)、T2 (泡沫塑料)、T3 (泡沫塑料+麦麸)、T4 (不饲喂)进行驯化,处理30 d后对大麦虫进行解剖,取肠道内容物于LB培养基中进行富集培养,将富集培养后的菌液加入以聚乙烯(polyethylene,PE)为唯一碳源的LCFBM培养基进行选择性培养,从中筛选分离得到对PE塑料有降解能力的菌株。【结果】取食泡沫塑料30d后,与单一饲喂PE相比,麦麸和PE混合饲喂后大麦虫幼虫的存活率为76%。采用傅里叶变换红外光谱检测发现虫粪组分中主要官能团中峰值明显变化,表明PE长链有断裂现象,并从肠道中分离得到3株可以对PE薄膜边缘造成明显侵蚀的菌株。【结论】大麦虫可取食并消化PE塑料,其肠道内的微生物对PE塑料的降解起到关键作用,研究结果为塑料污染的生物降解提供了科学证据。  相似文献   

4.
【目的】茶尺蠖是茶园中的重要害虫。研究茶尺蠖寄主食物-肠道菌群-茶尺蠖生长发育三者之间的关系对于茶尺蠖的防治具有重要的理论指导价值。【方法】分析不添加茶叶因子的纯人工饲料和茶树鲜叶对茶尺蠖幼虫的存活影响;用高通量测序技术分析不同饲料饲喂的茶尺蠖幼虫的肠道菌群异同。【结果】取食人工饲料的幼虫死亡率远远高于取食茶树鲜叶的幼虫;取食人工饲料的幼虫肠道细菌多样性和丰富度高于取食茶树鲜叶的幼虫;茶尺蠖幼虫肠道中存在很多促进宿主生长的细菌。【结论】饲料类型影响茶尺蠖幼虫的存活;饲料类型影响茶尺蠖幼虫肠道菌群结构。  相似文献   

5.
The gut bacterial community of wood-feeding beetles has been examined for its role on plant digestion and biocontrol method development. Monochamus alternatus and Psacothea hilaris, both belonging to the subfamily Lamiinae, are woodfeeding beetles found in eastern Asia and Europe and generally considered as destructive pests for pine and mulberry trees, respectively. However, limited reports exist on the gut bacterial communities in these species. Here, we characterized gut bacterial community compositions in larva and imago of each insect species reared with host tree logs and artificial diets as food sources. High-throughput 454 pyrosequencing of bacterial 16S rRNA gene revealed 225 operational taxonomic units (OTUs) based on a 97% sequences similarity cutoff from 138,279 sequence reads, the majority of which were derived from Proteobacteria (48.2%), Firmicutes (45.5%), and Actinobacteria (5.2%). The OTU network analysis revealed 7 modules with densely connected OTUs in specific gut samples, in which the distributions of Lactococcus-, Kluyvera-, Serratia-, and Enterococcus-related OTUs were distinct between diet types or developmental stages of the host insects. The gut bacterial communities were separated on a detrended correspondence analysis (DCA) plot and by c-means fuzzy clustering analysis, according to diet type. The results from this study suggest that diet was the main determinant for gut bacterial community composition in the two beetles.  相似文献   

6.
Feeding yoghurt or base milk (from which the yoghurt was prepared by fermentation) to rats increased the counts of coliforms in the gut whereas the counts of lactobacilli were reduced by yoghurt but not by the base milk. Lactobacillus bulgaricus survived in the guts of gnotobiotic and conventional rats when yoghurt was fed continuously. Streptococcus thermophilus also survived in gnotobiotic rats but its ability to survive in conventional rats could not be examined. Both organisms failed to colonise the gut when a small inoculum of yoghurt was administered orally to germfree rats maintained on the stock diet. Streptococcus thermophilus but not Lact. bulgaricus grew in the rat diet when tested in vitro. Two enzyme systems (beta-galactosidase and lactase) were studied using, respectively, o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose as the test substrates. Enzyme levels estimated with both substrates increased in the gut contents when rats were fed yoghurt but an increase was only found with ONPG in the intestinal mucosa fraction. The bacterial origin of all this increased activity is discussed. The other lactose-containing diets did not affect enzyme activity to the same degree. Feeding yoghurt changed the lactobacillus flora from one which was predominantly heterofermentative (Lact. reuteri ) to one which was predominantly homofermentative (Lact. salivarius).  相似文献   

7.
【目的】为研究饲料对不同家蚕Bombyx mori品种肠道微生物菌群的影响。【方法】以筛选到的家蚕广食性品种GS和普通品种1015为研究对象,收集从收蚁开始分别饲育桑叶(GS. m和C1015. m组)和人工饲料(GS. b组)至4龄盛时期的家蚕肠道样本,采用高通量测序的方法对其肠道微生物16S r DNA的V3-V4区进行测序分析,比较它们之间肠道微生物的差异。【结果】在门水平上,所测家蚕肠道样本的优势菌为厚壁菌门(Firmicutes)和变形杆菌门(Proteobacteria);在科水平上,所测样本主要优势菌为明串珠菌科(Leuconostocaceae)、乳酸杆菌科(Lactobacillaceae)、肠杆菌科(Enterobacteriaceae)等;在属水平上,所测样本主要的优势菌为魏斯氏属Weissella、乳酸菌属Lactobacillus、布赫纳氏菌属Buchnera、甲基杆菌属Methylobacterium、叶瘤菌属Phyllobacterium、肠球菌属Enterococcus和脆弱拟杆菌属Bacteroides等。家蚕品种GS经桑叶和人工饲料饲育后,甲基杆菌属Methylobacterium、布赫纳氏菌属Buchnera等菌属仅在桑叶饲育的GS肠道内出现,而魏斯氏菌Weissella、短芽孢杆菌属Brevibacillus等菌属只在人工饲料饲育的GS肠道内出现。同是桑叶饲育的家蚕品种GS和1015,其肠道内相同的优势菌有叶瘤菌属Phyllobacterium、脆弱拟杆菌属Bacteroides、不动细菌属Acinetobacter等。相较于广食性蚕品种GS的肠道菌群,肠球菌属Enterococcus、草螺菌属Herbaspirillum、丝硫菌属Thiothrix等菌属仅在普通蚕品种1015肠道中被检测到。GS. b组家蚕肠道细菌的物种多样性低于GS. m和C1015. m。GS. m肠道中丰度差异显著性最高的菌群为变形菌门(Proteobacteria),GS. b肠道中丰度差异显著性最高的菌群为杆菌纲(Bacilli)和乳杆菌目(Lactobacillales),而C1015. m肠道中丰度差异显著性最高的菌群为粪肠球菌属Enterococcus和肠球菌科(Enterococcaceae)。【结论】经桑叶饲育的不同蚕品种(GS和1015)的肠道微生物比人工饲料饲育的家蚕肠道微生物更趋于一致;经桑叶饲育的广食性家蚕肠道微生物物种多样性较高于经人工饲料饲育的广食性家蚕。  相似文献   

8.
Huhu grubs (Prionoplus reticularis) are wood-feeding beetle larvae endemic to New Zealand and belonging to the family Cerambycidae. Compared to the wood-feeding lower termites, very little is known about the diversity and activity of microorganisms associated with xylophagous cerambycid larvae. To address this, we used pyrosequencing to evaluate the diversity of metabolically active and inactive bacteria in the huhu larval gut. Our estimate, that the gut harbors at least 1,800 phylotypes, is based on 33,420 sequences amplified from genomic DNA and reverse-transcribed RNA. Analysis of genomic DNA- and RNA-derived data sets revealed that 71% of all phylotypes (representing 95% of all sequences) were metabolically active. Rare phylotypes contributed considerably to the richness of the community and were also largely metabolically active, indicating their participation in digestive processes in the gut. The dominant families in the active community (RNA data set) included Acidobacteriaceae (24.3%), Xanthomonadaceae (16.7%), Acetobacteraceae (15.8%), Burkholderiaceae (8.7%), and Enterobacteriaceae (4.1%). The most abundant phylotype comprised 14% of the active community and affiliated with Dyella ginsengisoli (Gammaproteobacteria), suggesting that a Dyella-related organism is a likely symbiont. This study provides new information on the diversity and activity of gut-associated microorganisms that are essential for the digestion of the nutritionally poor diet consumed by wood-feeding larvae. Many huhu gut phylotypes affiliated with insect symbionts or with bacteria present in acidic environments or associated with fungi.  相似文献   

9.
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi-omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high-protein or high-carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.  相似文献   

10.
Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.  相似文献   

11.
The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms amended with phenol or toulene were equally effective in removing c-DCE (> 90%) followed by TCE (60 to 70%), while the microcosm fed methane was most effective in removing t-DCE (> 90%). The microcosm fed ammonia was the least effective. None of the microcosms effectively degraded 1,1,1-trichloroethane. At the Moffett Field groundwater test site, in situ removal of c-DCE and TCE coincided with biostimulation through phenol and oxygen injection and utilization, with c-DCE removed more rapidly than TCE. Greater TCE and c-DCE removal was observed when the phenol concentration was increased. Over 90% removal of c-DCE and TCE was observed in the 2-m biostimulated zone. This compares with 40 to 50% removal of c-DCE and 15 to 25% removal of TCE achieved by methane-grown microorganisms previously evaluated in an adjacent in situ test zone. The in situ removal with phenol-grown microorganisms agrees qualitatively with the microcosm studies, with the rates and extents of removal ranked as follows: c-DCE > TCE > t-DCE. These studies demonstrate the potential for in situ TCE bioremediation using microorganisms grown on phenol.  相似文献   

12.
Termites are an important group of terrestrial insects that harbor an abundant gut microbiota, many of which contribute to digestion, termite nutrition and gas (CH(4), CO(2) and H(2)) emission. With 2200 described species, termites also provide a good model to study relationships between host diet and gut microbial community structure and function. We examined the relationship between diet and gut prokaryotic community profiles in 24 taxonomically and nutritionally diverse species of termites by using nucleic acid probes targeting 16S-like ribosomal RNAs. The relative abundance of domain-specific 16S-like rRNAs recovered from gut extracts varied considerably (ranges: Archaea (0-3%); Bacteria (15-118%)). Although Bacteria were always detectable and the most abundant, differences in domain-level profiles were correlated with termite diet, as evidenced by higher relative abundances of Archaea in guts of soil-feeding termites, compared to those of wood-feeding species in the same family. The oligonucleotide probes also readily distinguished gut communities of wood-feeding taxa in the family Termitidae (higher termites) from those of other wood-feeding termite families (lower termites). The relative abundances of 16S-like archaeal rRNA in guts were positively correlated with rates of methane emission by live termites, and were consistent with previous work linking high relative rates of methanogenesis with the soil (humus)-feeding habit. Probes for methanogenic Archaea detected members of only two families (Methanobacteriaceae and Methanosarcinaceae) in termite guts, and these typically accounted for 60% of the all archaeal probe signal. In four species of termites, Methanosarcinaceae were dominant, a novel observation for animal gut microbial communities, but no clear relationship was apparent between methanogen family profiles and termite diet or taxonomy.  相似文献   

13.
野生蓝莓和花青素提取物对高脂饮食小鼠肠道菌群的影响   总被引:1,自引:0,他引:1  
【目的】研究野生蓝莓和花青素提取物对高脂饮食小鼠肠道菌群的影响。【方法】采用高脂饲料喂养C57BL/6小鼠,同时膳食补充野生蓝莓或花青素提取物,将25只无菌小鼠分为5组:正常对照组(Normal chow diet,NCD),普通饲料+10 g/100 g蓝莓组(NCD+BB),高脂饲料组(High-fat diet,HFD),高脂饲料+10 g/100 g蓝莓组(HFD+BB),高脂饲料+20 mg/100 g花青素组(HFD+ACN),饲养10周,每周对其食物摄入量、能量摄入量以及体重进行测定,并运用DGGE方法对小鼠肠道菌群结构变化进行动态监测。【结果】各实验组食物摄入量无显著性差异,HFD+BB组和HFD+ACN组能量摄入量均明显高于NCD+BB组。虽然HFD+BB组体重增加最为明显,但10周末时HFD+BB组体重与其他各组无显著差异。随着实验的进行,HFD组、HFD+BB组和HFD+ACN组肠道微生物多样性发生明显变化。HFD+BB组与NCD组菌群差异最大,HFD+ACN组与NCD组肠道菌群DGGE图谱相似性系数明显高于HFD组,对优势条带测序结果显示膳食补充蓝莓或花青素提取物可明显降低肥胖相关细菌Firmicutes的数量。【结论】蓝莓和花青素提取物可改善由高脂饮食引起的肠道微生态失调,调节肠道菌群结构,具有潜在的减肥消脂功能。  相似文献   

14.
G arvie , E.I. C ole , C.B., F uller , R. & H ewitt , D. 1984. The effect of yoghurt on some components of the gut microflora and on the metabolism of lactose in the rat. Journal of Applied Bacteriology 56 , 237–245
Feeding yoghurt or base milk (from which the yoghurt was prepared by fermentation) to rats increased the counts of coliforms in the gut whereas the counts of lactobacilli were reduced by yoghurt but not by the base milk. Lactobacillus bulgaricus survived in the guts of gnotobiotic and conventional rats when yoghurt was fed continuously. Streptococcus thermophilus also survived in gnotobiotic rats but its ability to survive in conventional rats could not be examined. Both organisms failed to colonise the gut when a small inoculum of yoghurt was administered orally to germfree rats maintained on the stock diet. Streptococcus thermophilus but not Lact. bulgaricus grew in the rat diet when tested in vitro . Two enzyme systems (β-galactosidase and lactase) were studied using, respectively, o -nitrophenyl-β-D-galactopyranoside (ONPG) and lactose as the test substrates. Enzyme levels estimated with both substrates. increased in the gut contents when rats were fed yoghurt but an increase was only found with ONPG in the intestinal mucosa fraction. The bacterial origin of all this increased activity is discussed. The other lactose-containing diets did not affect enzyme activity to the same degree. Feeding yoghurt changed the lactobacillus flora from one which was predominantly hetero-fermentative ( Lact. reuteri ) to one which was predominantly homofermentative ( Lact. salivarius ).  相似文献   

15.
As primary consumers of foliage, caterpillars play essential roles in shaping the trophic structure of tropical forests. The caterpillar midgut is specialized in plant tissue processing; its pH is exceptionally alkaline and contains high concentrations of toxic compounds derived from the ingested plant material (secondary compounds or allelochemicals) and from the insect itself. The midgut, therefore, represents an extreme environment for microbial life. Isolates from different bacterial taxa have been recovered from caterpillar midguts, but little is known about the impact of these microorganisms on caterpillar biology. Our long-term goals are to identify midgut symbionts and to investigate their functions. As a first step, different diet formulations were evaluated for rearing two species of tropical saturniid caterpillars. Using the polymerase chain reaction (PCR) with primers hybridizing broadly to sequences from the bacterial domain, 16S rRNA gene libraries were constructed with midgut DNA extracted from caterpillars reared on different diets. Amplified rDNA restriction analysis indicated that bacterial sequences recovered from the midguts of caterpillars fed on foliage were more diverse than those from caterpillars fed on artificial diet. Sequences related to Methylobacterium sp., Bradyrhizobium sp., and Propionibacterium sp. were detected in all caterpillar libraries regardless of diet, but were not detected in a library constructed from the diet itself. Furthermore, libraries constructed with DNA recovered from surface-sterilized eggs indicated potential for vertical transmission of midgut symbionts. Taken together, these results suggest that microorganisms associated with the tropical caterpillar midgut may engage in symbiotic interactions with these ecologically important insects.  相似文献   

16.
The influence of carbon sources on bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis was investigated. 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analyses revealed that the bacterial community structure changed markedly depending on feed components at the phylum level. Spirochaetes was predominant in the clone libraries from wood- and wood powder-fed termites, whereas Bacteroidetes was the largest group in the libraries from xylan-, cellobiose-, and glucose-fed termites, and Firmicutes was predominant in the library from xylose-fed termites. In addition, clones belonging to the phylum Termite Group I (TG1) were found in the library from xylose-fed termites. Our results indicate that the symbiotic relationship between termite and gut microorganisms is not very strong or stable over a short time, and that termite gut microbial community structures vary depending on components of the feeds.  相似文献   

17.
The earthworm, Lumbricus rubellus, plays an essential role in soil ecosystems as it affects organic matter decomposition and nutrient cycling. By ingesting a mixture of organic and mineral material, a variety of bacteria and fungi are carried to the intestinal tract of the earthworm. To get a better understanding of the interactions between L. rubellus and the microorganisms ingested, this study tried to reveal if the diet affects the composition of the gut microflora of L. rubellus or if its intestinal tract hosts an indigenous, species-specific microbiota. A feeding experiment with L. rubellus was set up; individuals were collected in the field, transferred to a climate chamber and fed with food sources of different quality (dwarf shrub litter, grass litter or horse dung) for six weeks. DNA was extracted from the guts of the earthworms, as well as from the food sources and the surrounding soil, and further analysed by a molecular fingerprinting method, PCR-DGGE (Polymerase Chain Reaction -- Denaturing Gradient Gel Electrophoresis). We were able to demonstrate that the gut microbiota was strongly influenced by the food source ingested and was considerably different to that of the surrounding soil. Sequencing of dominant bands of the bacterial DGGE fingerprints revealed a strong occurrence of y-Proteobacteria in all gut samples, independent of the food source. A specific microflora in the intestinal tract of L. rubellus, robust against diet changes, could not be found.  相似文献   

18.
To clarify the effect of soy protein (SP) and fish meal (FM), compared to milk casein (MC), on the intestinal environment, we examined caecal environment of rats fed the test diets. Four-week-old rats were fed AIN-76-based diet containing 20 %, w/w MC, SP or FM for 16 days. Caecal organic acids were analysed by HPLC. Caecal putrefactive compounds (indole, phenol, H2S and ammonia) were analysed by colorimetric assays. Caecal microflora was determined by 16S rRNA gene-DGGE and pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. n-Butyric and lactic acid levels were high in rats fed SP and FM, respectively. Butyrate-producing bacteria, such as Oscillibacter, and lactate-producing bacteria, such as Lactobacillus, were detected in each diet group. Also, the putrefactive compound contents were high in rats fed SP and FM. In this study, both DGGE and pyrosequencing analyses were able to evaluate the dynamics of the intestinal microbiota. The results indicate that dietary proteins can alter the intestinal environment, affecting fermentation by the intestinal microbiota and the generation of putrefactive compounds.  相似文献   

19.
The influence of carbon sources on bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis was investigated. 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analyses revealed that the bacterial community structure changed markedly depending on feed components at the phylum level. Spirochaetes was predominant in the clone libraries from wood- and wood powder-fed termites, whereas Bacteroidetes was the largest group in the libraries from xylan-, cellobiose-, and glucose-fed termites, and Firmicutes was predominant in the library from xylose-fed termites. In addition, clones belonging to the phylum Termite Group I (TG1) were found in the library from xylose-fed termites. Our results indicate that the symbiotic relationship between termite and gut microorganisms is not very strong or stable over a short time, and that termite gut microbial community structures vary depending on components of the feeds.  相似文献   

20.
Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号