首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu T  Li YS  Chen XF  Hu J  Chang X  Zhu YG 《Journal of plant physiology》2003,160(11):1305-1311
A GST (EC 2.5.1.18) gene (Gst-cr 1) from cotton was introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants overexpressing Gst-cr1 were normal in growth and mature compared with control, but had much higher levels of GST and GPx activities and showed an enhanced resistance to oxidative stress induced by a low concentration of methyl viologen (MV). Six antioxidant enzymes, glutathione S-transferase, glutathione peroxidase (EC 1.11.1.9), superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), and ascorbate peroxidase (EC 1.11.1.11) were monitored in transgenic lines and non-transgenic control during MV treatments. When they were treated with 0.03 mmol/L of MV, both transgenic lines and control showed a rapid increase in the activities of GST, GPx, SOD, POD, APx, while the activity of CAT seemed to be irregular. The percent of the increase in SOD and POD activities was much higher in control than in transgenic plants. When treated with 0.05 mmol/L of MV, both control and transgenic plants were severely damaged, and the activities of the six enzymes decreased sharply.  相似文献   

2.
3.
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.  相似文献   

4.
As immature and aged rats could be more sensitive to ozone (O(3))-linked lung oxidative stress we have attempted to shed more light on age-related susceptibility to O(3) with focusing our interest on lung mitochondrial respiration, reactive oxygen species (ROS) production and lung pro/antioxidant status. For this purpose, we exposed to fresh air or O(3) (500 ppb 12 h per day, for 7 days) 3 week- (immature), 6 month- (adult) and 20 month-old rats (aged). We determined, in lung, H(2)O(2) release by mitochondria, activities of major antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)], heat shock protein (HSP(72)) content and 8-oxodG and dG-HNE nDNA contents, as DNA oxidative damage markers. In adult rats we did not observe alteration of pro/antioxidant status. In contrast to adults, immature rats exposed to O(3) higher nDNA 8-oxodG content and HSP(72) and without antioxidant enzymes modification. Aged rats displayed mild uncoupled lung mitochondria, increased SOD and GPx activities, and higher 8-oxodG content after O(3) exposure. Thus, in contrast to adults, immature and aged rats displayed lung oxidative stress after O(3) exposure. Higher sensitivity of immature to O(3) was partly related to ventilatory parameters and to the absence of antioxidant enzyme response. In aged rats, the increase in cytosolic SOD and GPx activities during O(3) exposure was not sufficient to prevent the impairment in mitochondrial function and accumulation in lung 8- oxodG. Finally, we showed that mitochondria seem not to be a major source of ROS under O(3) exposure.  相似文献   

5.
The effects of UV-B radiation and/or deprivation of nitrogen stresses on growth rate, some antioxidant compounds, and activities of some antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), ascorbate peroxidase (APx; EC1.11.1.11), guaiacol peroxidase (GUPx; EC1.11.1.7) and glutathione reductase (GR, EC 1.6.4.2), as well as the levels of total glutathione pool, UV-B absorbing pigments, malondialdehyde (MDA) and H2O2 concentrations were studied in Spirulina platensis and Dunaliella salina. Less damage was observed in response to the combined UV-B and nitrogen deprivation as shown by growth rate and photosynthetic pigments especially in Dunaliella salina. A significant increase in flavonoids and phenolics under dual stress was observed. Conversely, a great reduction in malondialdehyde (MDA) and H2O2 concentrations were recorded under the combined stress compared to the effect of each stress. Furthermore, a significant increase in GSH/GSSG ratio toward the control was recorded in response to combined stresses, whereas a significant reduction in this ratio was observed in both microalgae in response to each stress. Increased activities of antioxidant enzymes were recorded under UV-B and nitrogen deprivation stresses.  相似文献   

6.
There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance.  相似文献   

7.
Catalases of pathogenic micro-organisms have attracted attention as potential virulence factors. Homology-based screens were performed to identify catalase genes in the fungal tomato pathogen Cladosporium fulvum. Two highly divergent genes, Cat1 and Cat2, were isolated and characterized. Cat1 codes for a putative 566-amino-acid catalase subunit and belongs to the gene family that also encodes the mainly peroxisome-localized catalases of animal and yeast species. Cat2 codes for a putative catalase subunit of 745 amino acids and belongs to a different gene family coding for the large-subunit catalases similar to ones found in bacteria and filamentous fungi. Neither catalase had an obvious secretory signal sequence. A search for an extracellular catalase was unproductive. The Cat1 and Cat2 genes showed differential expression, with the Cat1 mRNA preferentially accumulating in spores and the Cat2 mRNA preferentially accumulating in response to external H(2)O(2). With Cat2-deleted strains, activity of the Cat2 gene product (CAT2) was identified among four proteins with catalase activity separated on non-denaturing gels. The CAT2 activity represented a minor fraction of the catalase activity in spores and H(2)O(2)-stressed mycelium, and no phenotype was observed for Cat2-deleted strains, which showed a normal response to H(2)O(2) treatment. These results indicate the existence of a complex catalase system in C. fulvum, with regard to both the structure and regulation of the genes involved. In addition, efficient C. fulvum gene-replacement technology has been established.  相似文献   

8.
Heavy metal stress results in the production of O(2)(.-), H(2)O(2) and (.)OH, which affect various cellular processes, mostly the functioning of membrane systems. Cells are normally protected against free oxyradicals by the operation of intricate antioxidant systems. The aim of the present work is to examine the effect of CdCl(2) and ZnSO(4) on antioxidative enzyme activity in the gastropod, Achatina fulica. The concentrations of antioxidant enzymes--superoxide dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx)--and nonenzymatic antioxidants--glutathione and vitamin-C--were found to be decreased in both digestive gland and kidney of the gastropod, Achatina fulica treated with individual concentrations of 0.5 ppm and 1ppm of CdCl(2) and ZnSO(4), compared to that of control animals. Based on the above study, it is evident that Achatina fulica can be used as a bioindicator to monitor the environmental heavy metal pollution.  相似文献   

9.
Ascorbate peroxidase (APx) is a class I peroxidase that catalyzes the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. This enzyme has a key function in scavenging reactive oxygen species (ROS) and the protection against toxic effects of ROS in higher plants, algae, and Euglena. Here we report the identification of an APx multigene family in rice and propose a molecular evolutionary relationship between the diverse APx isoforms. In rice, the APx gene family has eight members, which encode two cytosolic, two putative peroxisomal, and four chloroplastic isoforms, respectively. Phylogenetic analyses were conducted using all APx protein sequences available in the NCBI databases. The results indicate that the different APx isoforms arose by a complex evolutionary process involving several gene duplications. The structural organization of APx genes also reflects this process and provides evidence for a close relationship among proteins located in the same subcellular compartment. A molecular evolutionary pathway, in which cytosolic and peroxisomal isoforms diverged early from chloroplastic ones, is proposed.Reviewing Editor: Dr. Niles Lehman  相似文献   

10.
11.
In a prospective, double-blind, randomised placebo-controlled study, we tested the hypothesis that a new formulation consisting of wheat gliadin chemically combined with a vegetal (thus orally effective) preparation of superoxide dismutase (SOD) allows to prevent hyperbaric oxygen (HBO)-induced oxidative cell stress. Twenty healthy volunteers were exposed to 100% oxygen breathing at 2.5 ATA for a total of 60 min. DNA strand breaks (tail moments) were determined using the alkaline version of the comet assay. Whole blood concentrations of reduced (GSH) and oxidised (GSSG) glutathione and F2-isoprostanes, SOD, glutathione peroxidase (GPx) and catalase (Cat) activities and red cell malondialdehyde (MDA) content were determined. After HBO exposure the tail moment [Formula: See Text] and isoprostane levels [Formula: See Text] were significantly lower in the group that received the vegetal formulation. Neither SOD and Cat nor GSH and GSSG were significantly affected by this preparation or HBO exposure. By contrast, blood GPx activity, which tended to be lower in the SOD-group already before the HBO exposure [Formula: See Text] was significantly lower afterwards [Formula: See Text] We conclude that an orally effective SOD-wheat gliadin mixture is able to protect against DNA damage, which coincided with reduced blood isoprostane levels, and may therefore be used as an antioxidant.  相似文献   

12.
A balance between production and elimination of reactive oxygen species such as superoxide anion (O2*-) and hydrogen peroxide (H2O2) tightly regulates the homeostasis of cellular oxidative stress, which contributes to a variety of cardiovascular diseases, including hypertension. The present study assessed the hypothesis that O2*- or H2O2 levels augmented by the reduced molecular synthesis or enzyme activity of superoxide dismutase (SOD), catalase (CAT), or glutathione peroxidase (GPx) in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that generate tonic vasomotor tone are located, contribute to the pathogenesis of hypertension. We found that copper/zinc SOD (SOD1), manganese SOD (SOD2), or CAT, but not GPx, mRNA or protein expression and enzyme activity in the RVLM of spontaneously hypertensive rats (SHR) were significantly lower than those in normotensive Wistar-Kyoto (WKY) rats, along with a significantly higher level of O2*- or H2O2. A causative relationship between these biochemical correlates of oxidative stress and neurogenic hypertension was established when gene transfer by microinjection of adenovirus encoding SOD1, SOD2, or CAT into the bilateral RVLM promoted a long-lasting reduction in arterial pressure in SHR, but not WKY rats, accompanied by an enhanced SOD1, SOD2, or CAT protein expression or enzyme activity and reduced O2*- or H2O2 level in the RVLM. These results together suggest that downregulation of gene expression and enzyme activity of the antioxidant SOD1, SOD2, or CAT may underlie the augmented levels of O2*- and H2O2 in the RVLM, leading to oxidative stress and hypertension in SHR.  相似文献   

13.
Screening of a cDNA library from soybean (Glycine max (L.) Merr. cv. Century) with probes based upon cytosolic ascorbate peroxidase (APx; EC 1.11.1.11) genes identified two full-length clones (SOYAPx1, SOYAPx2) apparently encoding for different soybean leaf cytosolic APxs. The deduced amino acid sequences of the two APx cDNA products differed in 13 of the 250 amino acids. The SOYAPx1 cDNA was identical to the cytosolic APx cDNA previously found in soybean root nodules. Escherichia coli expression systems were developed using both soybean APx cDNAs. Recombinant SOYAPx1 and SOYAPx2 were then utilized to characterize the enzymatic properties of the two APx cDNA products. Received: 10 May 1997 / Accepted: 19 June 1997  相似文献   

14.
15.
二氧化硫胁迫导致拟南芥防护基因表达改变   总被引:4,自引:0,他引:4  
仪慧兰  李利红  仪民 《生态学报》2009,29(4):1682-1687
研究SO2熏气对拟南芥细胞中mRNA和蛋白质表达的影响,分析植株对逆境胁迫的响应机制.结果表明,30 mg·m-3 SO2 熏气72 h后拟南芥地上组织中差异表达1倍以上的基因有494个,其中抗氧化酶、谷胱甘肽硫转移酶(GST)、硫氧还蛋白等多种与逆境生理关系密切的基因表达上调;2.5~30 mg·m-3 SO2 熏气可导致超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)和GST的活性诱导性增高,SOD、CAT同工酶谱带特征改变.研究结果表明,SO2 胁迫能够诱导拟南芥中防护基因在mRNA和蛋白质表达水平的改变,这些基因的差异性表达可能对逆境生理过程有益.  相似文献   

16.
17.
T Ozen  H Korkmaz 《Phytomedicine》2003,10(5):405-415
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.  相似文献   

18.
Reactive oxygen species (ROS) are involved in cell growth, differentiation, and death. Excessive amounts of ROS (e.g., O(2)(-), H(2)O(2), and HO) play a role in aging as well as in many human diseases. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are critical antioxidant enzymes in living organisms. SOD catalyzes the dismutation of O(2)(-) to H(2)O(2), and GPx catalyzes the reduction of H(2)O(2) and other harmful peroxides by glutathione (GSH). They not only function in catalytic processes but also protect each other, resulting in more efficient removal of ROS, protection of cells against injury, and maintenance of the normal metabolism of ROS. To imitate the synergism of SOD and GPx, a 65-mer peptide (65P), containing sequences that form the domains of the active center of SOD and the catalytic triad of GPx upon the incorporation of some metals, was designed on the basis of native enzyme structural models; 65P was expressed in the cysteine auxotrophic expression system to obtain Se-65P. Se-65P was converted into Se-CuZn-65P by incorporating Cu(2+) and Zn(2+). Se-CuZn-65P exhibited high SOD and GPx activities because it has a delicate dual-activity center. The synergism of the enzyme mimic was evaluated by using an in vitro model and a xanthine/xanthine oxidase/Fe(2+)-induced mitochondrial damage model system. We anticipate that the peptide enzyme mimic with synergism is promising for the treatment of human diseases and has potential applications in medicine as a potent antioxidant.  相似文献   

19.
20.
Oxidants,antioxidants and carcinogenesis   总被引:9,自引:0,他引:9  
Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of nitrosamine formation and an alteration of metabolic activations of carcinogens. They can prevent genetic changes by inhibiting DNA damage induced by the ROMs. Therefore, these antioxidants may be helpful in the treatment of human cancer. However, detailed studies are required to draw a definite conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号