首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

2.
Carboxypeptidase Y, localized in the lysosome-like yeast vacuole, has been metabolically labeled with [2-3H]mannose. After immunoprecipitation the carbohydrate moieties were released by treatment with endo-β-N-acetyl-glucosaminidase H and separated by paper electrophoresis. Evidence for the presence of phospho-monoester and -diester groups in the molecule has been obtained. In the latter phosphate links C-1 of mannose or of mannosyl 1,3-mannose to C-6 of a mannose residue within a larger oligomannose moiety. In the presence of tunicamycin yeast cells synthesize a carbohydrate-free carboxypeptidase Y, which could be traced after metabolic labeling with [14C]-phenylalanine. The carbohydrate-free enzyme was segregated into the vacuoles to the same extent as the intact glycoprotein.  相似文献   

3.
A particulate enzyme from bovine aorta catalyzes the incorporation of mannose from GDP-D-[14C]mannose into three products as follows: 1. Most of the radioactivity which is incorporated in short term incubations is into a product that is soluble in CHCl3/CH3OH (2/1, v/v). This product was purified by chromatography on DEAE-cellulose and Sephadex LH-20. The purified glycolipid was stable to alkaline saponification but released [14C]mannose when subjected to mild acid hydrolysis (1/2 = 7 min at 100 degrees in 0.01 N HCl). The purified glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did authentic dolichyl mannopyranosyl phosphate. The synthesis of the 14C-mannolipid was reversed by the addition of GDP and Mg2+. 2. [14C]mannose is also incorporated, although at a slower rate into products which are soluble in CHCl3/CH3OH/H2O (1/1/0.3, v/v). When the 1/10.3 soluble material was chromatographed on Avicel plates, it gave rise to three distinct radioactive bands which appear to be lipid-linked oligosaccharides. Mild acid hydrolysis of the 1/10.3 soluble material released water-soluble, neutral 14C-oligosaccharides which eluted from Sephadex G-50 in two or three peaks between the standards cytochrome c and GDP-mannose...  相似文献   

4.
An oxidized pterin species, termed compound Z, has been isolated from molybdenum cofactor-deficient mutants of Escherichia coli and shown to be the direct product of oxidation of a molybdopterin precursor which accumulates in these mutants. The complete structural characterization of compound Z has been accomplished. A carbonyl function at C-1' of the 6-alkyl side chain can be reacted with 2,4-dinitrophenylhydrazine to yield a phenylhydrazone and can be reduced with borohydride, producing a mixture of two enantiomers, each with a hydroxyl group on C-1'. Compound Z contains one phosphate/pterin and no sulfur. The phosphate group is insensitive to alkaline phosphatase and to a number of phosphodiesterases but is quantitatively released as inorganic phosphate by mild acid hydrolysis. From 31P and 1H NMR of compound Z it was inferred that the phosphate is bound to C-2' and C-4' of a 4-carbon side chain, forming a 6-membered cyclic structure. Mass spectral analysis showed an MH+ ion with an exact mass of 344.0401 corresponding to the molecular formula C10H11N5O7P, confirming the proposed structure.  相似文献   

5.
Bovine intestinal alkaline phosphatase was found to hydrolyze inositol phosphates many times faster than the monoester phosphate groups of the polyphosphoinositides. A convenient and sensitive in vitro assay for the Ca2+-dependent polyphosphoinositide phosphodiesterase was devised in which inositol trisphosphate released from exogenous phosphatidylinositol 4,5-bisphosphate was hydrolyzed by alkaline phosphatase. The resulting inorganic phosphate was measured by an automated method after solubilization of the reaction mixture with sodium dodecyl sulfate. The phosphodiesterase was maximally stimulated by combining the known positive effects of cetyltrimethylammonium bromide (at the optimum detergent-to-substrate ratio of 2.3), monovalent cations (0.1 M KCl), and Ca2+ (0.5 mM) with the additional enhancement by Triton X-100 (0.2% w/v). Activities obtained for rat brain homogenates and microsomal and cytosol fractions were 126 +/- 3.8 (17), 110 +/- 5.7 (10), and 252 +/- 15.5 (8) nmol X min-1 X mg protein-1 (mean +/- SE for n determinations), respectively.  相似文献   

6.
Structural analysis of the phosphomannan isolated from yeast-form cells of a pathogenic yeast, Candida albicans J-1012 strain, was conducted. Treatment of this phosphomannan (Fr. J) with 10 mM HCl at 100 degrees C for 60 min gave a mixture of beta-1,2-linked manno-oligosaccharides, from tetraose to biose plus mannose, and an acid-stable mannan moiety (Fr. J-a), which was then acetolyzed by means of an acetolysis medium, 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4, at 40 degrees C for 36 h in order to avoid cleavage of the beta-1,2 linkage. The resultant manno-oligosaccharide mixture was fractionated on a column of Bio-Gel P-2 to yield insufficiently resolved manno-oligosaccharide fractions higher than pentaose and lower manno-oligosaccharides ranging from tetraose to biose plus mannose. The higher manno-oligosaccharide fraction was then digested with the Arthrobacter GJM-1 alpha-mannosidase in order to cleave the enzyme-susceptible alpha-1,2 and alpha-1,3 linkages, leaving manno-oligosaccharides containing the beta-1,2 linkage at their nonreducing terminal sites, Manp beta 1----2Manp alpha 1----2Manp alpha 1----2Manp alpha 1----2Man, Manp beta 1----2Manp beta 1----2Manp alpha 1----2Manp alpha 1---- 2Manp alpha 1----2Man, and Manp beta 1----2Manp beta 1----2Manp beta 1----2Manp alpha 1---- 2Manp alpha 1----2Manp alpha 1----2Man. However, the result of acetolysis of Fr. J-a by means of a 10:10:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 13 h was significantly different from that obtained by the mild acetolysis method; i.e., the amount of mannose was apparently larger than that formed by the mild acetolysis method. In summary, a chemical structure for Fr. J as a highly branched mannan containing 14 different branching moieties was proposed.  相似文献   

7.
Mannose 6-phosphate is an important recognition site involved in transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes. The current study is the first demonstration of functional mannose phosphate receptors in macrophages. The receptor appears to be similar in many respects to that expressed in fibroblasts. Binding at 4 degrees C of a mannose-6-P-containing ligand, alpha-mannosidase from Dictyostelium discoideum, was specific and saturable (KD = 1.6 nM). In the presence of permeabilizing agents (saponin and digitonin), macrophage mannose-6-P receptors gave a distribution of 15-20% on the surface and 80-85% inside. Uptake studies gave a Kuptake value of 4.9 nM. Mannose-6-P, Hansenula holstii phosphomannan, and fructose 1-phosphate were effective inhibitors of alpha-mannosidase uptake. Inhibitors of mannose uptake, such as beta-glucuronidase, mannose-bovine serum albumin, fucose-bovine serum albumin, or mannan had no effect on alpha-mannosidase uptake. Likewise, an inhibitor (fucoidin) of the macrophage receptor which recognizes negatively charged proteins did not inhibit alpha-mannosidase uptake. Uptake was linear over 90 min and inhibited by chloroquine, suggesting that surface receptors recycle. These data demonstrate that macrophages contain receptors which specifically recognize mannose-6-P units and are distinct from the well characterized mannose receptors. The finding that the mannose-6-P receptors play a role at the surface, together with the fact that most of the receptors are intracellular (similar to the mannose receptor) suggests that both carbohydrate receptors play a regulatory role at the surface and intracellularly in transport of lysosomal enzymes.  相似文献   

8.
Glycoproteins that contain phosphohexosyl groups were found to be present in the myelin- and synaptosomal-enriched fractions as well as in the microsomes of rat brain. The kinetics of flow of intraperitoneally injected [32P]phosphate suggests that the phosphate is enzymatically added in structures found in the microsomal fraction. The newly synthesized phosphoglycoproteins then appear in the soluble fraction of the synaptosomes and in the cytosol, prior to incorporation into the membranes of the synaptosomes and myelin. Phosphoglycopeptides recovered from the phosphoglycoprotein contain 3 Mannose units per N-acetylglucosamine residue; one of the mannose residues is phosphorylated. [13C]NMR studies indicate that the phosphoglycopeptides contain a chitobiose group and more than four sugar residues. Thus, the phosphomannoglycopeptides from rat brain contain an average of 2 N-acetylglucosamine, 6 mannose, and two phosphate moieties per oligosaccharide chain. Enzymatic treatment with -mannosidase failed to remove the phosphomannose, although some mannose residues were released. Thus, the phosphorylated mannose is not removed by the glycosidase and terminal nonphosphorylated mannose residues are present in the oligosaccharide. The phosphate residues are removed by treatment with alkaline phosphatase.  相似文献   

9.
The glycerol teichoic acid of walls of Staphylococcus lactis I3   总被引:13,自引:10,他引:3  
1. The teichoic acid from walls of Staphylococcus lactis I3 was isolated by extraction with trichloroacetic acid and shown to contain glycerol, N-acetylglucosamine, phosphate and d-alanine in the molecular proportions 1:1:2:1. The alanine is attached to the polymer through ester linkages. 2. Hydrolysis with acid gave alanine, glucosamine and glycerol diphosphates. Under mild acid conditions a repeating unit was produced; this consists of glycerol diphosphate joined through a phosphodiester group to N-acetylglucosamine. 3. Hydrolysis with alkali gave glycerol diphosphates, saccharinic acid and two phosphodiesters containing glucosamine whose structures were elucidated; these both contain glucosamine 1-phosphate, and N-acetylglucosamine 1-phosphate was isolated by a degradative procedure. 4. The unusual properties of the teichoic acid are explained by a polymeric structure in which N-acetylglucosamine 1-phosphate is attached through its phosphate to glycerol phosphate. 5. The biosynthetic implications of this structure are discussed.  相似文献   

10.
《Phytochemistry》1986,25(2):443-448
Mannitol, sucrose and four monosaccharides were obtained from an ethanolic extract of Ascoseira mirabilis. Sequential extraction with aqueous calcium chloride, dilute acid and dilute alkali gave mixtures of laminaran, ‘fucan’ and alginic acid. Laminarans fractionated from the extracts contained different proportions of uniformly (1 → 3) and (1 → 6) linked chains of β-D-glucose residues. The ‘fucan’ contained varying proportions of fucose, galactose and glucuronic acid, small amounts of xylose, mannose, glucose, half ester sulphate and protein. Extraction of the weed under mild alkaline conditions gave a yield of 13.4% of low molecular weight calcium alginate with a mannuronate to guluronate ratio of 30:70 and only a small proportion of sequences of alternating residues. Selective extraction and fractionation gave alginate fractions rich (> 80%) in mannuronate or guluronate.  相似文献   

11.
1. Reaction of 2-(N-acetoxy)-acetamidofluorene with orthophosphate buffer at pH7 yielded a large quantity of water-soluble fluorene derivatives, which showed absorption peaks at 303, 290 and 280nm. Tris buffer under similar conditions gave negligible reaction. 2. Hydrolysis of polar material with acid or alkaline phosphatases liberated equimolar amounts of inorganic phosphate and an ether-extractable fluorene derivative. On the basis of its u.v. spectrum, R(F) values after paper chromatography, solubility in alkali and colour with spray reagents, the derivative was characterized tentatively as 2-acetamido-5-hydroxyfluorene. 3. Polar material also contained a reactive fluorene derivative which gave characteristic reaction products with methionine and guanosine. The reactive derivative was characterized as a phosphate ester of 2-(N-hydroxy)-acetamidofluorene. 4. It is suggested that such reactive phosphate esters may also be some of the ultimate carcinogenic metabolites of carcinogenic aromatic hydroxamic acids.  相似文献   

12.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

13.
Chemical structures of manno-oligosaccharides, from biose to heptaose, released from the phosphomannan of Candida albicans NIH B-792 strain (serotype B) by mild acid hydrolysis were investigated. The results of 1H NMR, 13C NMR, and fast atom bombardment mass spectrometry analyses confirmed that these manno-oligosaccharides belong to a homologous beta-1,2-linked series. Although chemical shifts of 1H NMR patterns of these oligosaccharides were considerably too complicated to be assigned, their 13C NMR patterns were sufficiently simple to be interpreted, exhibiting a regular increase of downfield shift of ppm values of the C-1 atom from each mannopyranose residue in proportion to their molecular weights. In order to determine the whole chemical structure of the parent phosphomannan, the acid-stable domain was subjected to acetolysis and then enzymolysis with the Arthrobacter GJM-1 alpha-mannosidase and the resultant manno-oligosaccharides were investigated for their chemical structures by 1H NMR spectroscopy. The results of a precipitin-inhibition test using the beta-1,2-linked manno-oligosaccharides, from biose to hexaose, in comparison with the corresponding isomers containing alpha-1,2 linkage with small amounts of alpha-1,3 linkage, indicated that the haptens possessing the former linkage exhibited much higher inhibitory effects than the corresponding isomers containing the latter linkages did. Based on the present findings, a chemical structure of the phosphomannan of this C. albicans strain was proposed.  相似文献   

14.
Expression of an unusual acidic glycoconjugate in Leishmania donovani   总被引:12,自引:0,他引:12  
An acidic glycoconjugate containing mannose, galactose and phosphate in approximately equimolar amounts was extracted from Leishmania donovani promastigotes and partially characterized. The glycoconjugate could be metabolically labeled with either [3H]mannose or [3H]galactose and was extractable from a delipidated residue fraction with water/ethanol/diethyl ether/pyridine/concentrated NH4OH (15:15:5:1:0.017) at 25 degrees C. The radioactively labeled glycoconjugate was found to possess the following characteristics: 1) comprised 45-60% of the total [3H]mannose label incorporated into macromolecules; 2) was soluble in alkaline solvents and 0.5% Triton X-100; 3) migrated as a broad band upon electrophoresis on sodium dodecyl sulfate-polyacrylamide gels with an approximate molecular weight of 15,000-30,000; 4) bound to DE52 cellulose and was eluted with a salt gradient of 0-0.1 M NaCl; 5) was insensitive to Pronase, hyaluronidase, chondroitinase, endo-beta-N-acetylglucosaminidase H, and endo-beta-galactosidase; and 6) possessed hydrophobic properties. An unusual feature of the glycoconjugate was its lability to mild acid hydrolysis (0.02 N HCl, 15 min, 60 degrees C). As determined by alkaline phosphatase and glycosidase digestion and paper chromatographic analysis, the major fragment generated by mild acid hydrolysis was found to be a phosphorylated galactosyl-beta-mannose disaccharide. All of these characteristics suggest that the glycoconjugate may be a polysaccharide and, possibly, may be important in parasite-host cell interactions.  相似文献   

15.
A glycoprotein enzyme, 1,4-beta-D-glucan cellobiohycrolase (EC 3.2.1.91) form C, was purified to electrophoretic homogeneity by a procedure which permitted isolation of gram quantities from a commercial Trichoderma viride culture filtrate preparation. Purified cellobiohydrolase C has an E1%/280 nm = 14.2 and degrades both microcrystalline and phosphoric acid-swollen cellulose to cellobiose. The cellobiohydrolase C contains 26.4, 4.8, 2.4 and 3.4 mol of mannose, glucose, galactose and glucosamine, respectively, per mol of enzyme (molecular weight, 48 400). Methylation analysis of cellobiohydrolase glycopeptides indicates an average carbohydrate chain length of two residues. Alkaline borohydride treatment of cellobiohydrolase C released neutral carbohydrate which is bound through an average of 16.7 O-glycosidic linkages to serine and threonine per molecule of enzyme. Glucosamine was not released from the protein by alkaline treatment. Analysis of alkaline borohydride-released carbohydrate by high pressure liquid chromatography demonstrated that an average enzyme molecule contains 8.8 mono-, 1.8 di-, 4.6 tri-, 1.2 tetra-, and 0.4 pentasaccharide chains. The linkages between the neutral monosaccharides are (1 leads to 6) as shown by gas chromatography - mass spectrometry of partially methylated residues. The (1 leads to 6) linkage is consistent with the stability of the linkages to alkaline conditions and the destruction of all neutral carbohydrate by periodate. Action of alpha-mannosidase indicates that some oligosaccharide chains contain alpha-mannose as the terminal residue.  相似文献   

16.
Two polymeric water-soluble fractions were isolated by gel filtration after mild acid hydrolysis of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 1999. The fraction of higher molecular weight retained the O-antigenic specificity of the lipopolysaccharide and may be 'side-chain' material. This fraction was rich in N (about 10%) and gave several basic amino compounds on acid hydrolysis; fucosamine (at least 2.8% w/w) was the only specifc component identified. The fraction of lower molecular weight was a phosphorylated polysaccharide apparently corresponding to 'core' material. The major components of this fraction and their approximate molar proportions were: glucose (3-4); rhamnose (1); heptose (2); 3-deoxy-2-octulonic acid (1); galactosamine (1); alanine (1-1.5); phosphorus (6-7). In the intact lipopolysaccharide this fraction was probably linked to lipid A via a second residue of 3-deoxy-2-octulonic acid, and probably also contained additional phosphate residues and ethanolamine. The residues of 3-deoxy-2-octulonic acid were apparently substituted in the C-4 or C-5 position, and the phosphorylated heptose residues in the C-3 position. The rhamnose was mainly 2-substituted, though a little 3-substitution was detected. The glucose residues were either unsubstituted or 6-substituted. Four neutral oligosaccharides were produced by partial acid hydrolysis and were characterized by chemical, enzymic, chromatographic and mass-spectrometric methods of analysis. The structures assigned were: Glcpalpha1-6Glc; Glcpbeta1-2Rha; Rhapalpha1-6Glc; Glcpbeta1-2Rhapalpha1-6Glc. The galactosamine was substituted in the C-3 or C-4 position, the attachment of alanine was indicated, and evidence that the amino sugar linked the glucose-rhamnose region to the 'inner core' was obtained.  相似文献   

17.
Incubation of rat liver nuclear envelopes with [gamma-32P]ATP resulted in the synthesis of phosphatidylinositol-[4-32P]phosphate (PIP). Degradation of endogenously labeled PIP was observed upon the dilution of the labeled ATP with an excess of unlabeled ATP. This degradation was most rapid in the presence of EDTA, and was inhibited by MgCl2 and CaCl2. To further characterize the degradative activity, phosphatidylinositol[4-32P]phosphate and phosphatidylinositol [4,5-32P]bisphosphate (PIP2) were synthesized and isolated from erythrocyte plasma membranes. The 32P-labeled phospholipids were then resuspended in 0.4% Tween 80, a detergent that did not inhibit degradation of endogenously labeled PIP, and mixed with nuclear envelopes. [32P]PIP and [32P]PIP2 were degraded at rates of 2.25 and 0.04 nmol min-1 mg nuclear envelope protein-1, respectively. Only 32P was released from phosphatidyl[2-3H]inositol-[4-32P]phosphate, indicating that hydrolysis of PIP was due to a phosphomonoesterase activity (EC 3.1.3.36) in nuclear envelopes. Similarly, anion-exchange chromatographic analysis of the water-soluble products released from [32P]PIP indicated that inorganic phosphate was the sole 32P-labeled product. Hydrolysis of PIP was most rapid at neutral pH, and was not affected by inhibitors of acid phosphatase or alkaline phosphatase. Hydrolysis of PIP was also not inhibited by nonspecific phosphatase substrates, such as glycerophosphate, p-nitrophenylphosphate, AMP, or glucose 6-phosphate. Hydrolysis was stimulated by putrescine, and was inhibited by inositol 2-phosphate, spermidine, spermine, and neomycin.  相似文献   

18.
The N-linked oligosaccharides, from Saccharomyces cerevisiae mnn1 mnn9 mutant mannoprotein extracted from the cells in hot citrate buffer, were separated by ion exchange into a monophosphate diester, a monophosphate monoester, a diphosphate diester, and a diphosphate monoester diester. The structures of the major components with diesterified phosphate were assigned as follows (where M = mannose), according to a recently revised oligosaccharide structure for the mnn mutants (Hernandez, L. M., Ballou, L., Alvarado, E., Gillece-Castro, B. L., Burlingame, A. L., and Ballou, C. E. (1989) J. Biol. Chem. 264, 11849-11856). formula; see text The monoester derivatives were mixtures of the possible isomers produced by removal of one or the other phosphoglycosyl-linked mannose units, and they were shown to arise by chemical degradation during isolation. The mnn1 mnn2 mnn10 acidic oligosaccharide fraction contained a mono- and a diphosphate ester. The monophosphate consisted predominantly of a single isomer with a mannosyl phosphate unit located at the end of the outer chain in an oligosaccharide with the following structure, where x may range from 2 to 12. The diphosphate had a mannosyl phosphate in this formula; see text position as well as one on the terminal alpha 1----6-linked mannose in the core. The presence in the mnn1 mnn9 or mnn1 mnn2 mnn10 background of the mnn4 or mnn6 mutations, which are known to regulate phosphorylation in yeast, reduced phosphorylation by 90% but did not eliminate it. AI-12522  相似文献   

19.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

20.
Prorenin was isolated by immunoprecipitation from the culture medium of Chinese hamster ovary cells transfected with a human prorenin cDNA. The N-linked oligosaccharide structures on the in vivo [3H]mannose-labeled, purified protein were characterized using a combination of serial lectin affinity chromatography, high-pressure liquid chromatography, ion-exchange chromatography, and size-exclusion chromatography and treatment with specific glycosidases and methylation analysis. Approximately 61% of the oligosaccharides on the molecule are complex type, in the form of tetraantennary (2%), 2,6-branched triantennary (13%), 2,4-branched triantennary (3%), and biantennary (43%) structures. The majority of all complex type structures are core-fucosylated. Sialic acids are linked at the C-3 position of terminal galactose, and the degree of sialylation of the bi- and triantennary structures varies between nonsialylated and fully sialylated; no tetraatennary structure contains more than three sialic acid residues. Recombinant prorenin contains 4% hybrid-type structures, all of which carry a terminal sialic acid residue. The remaining 35% of the structures on the molecule are high mannose type, composed of 5, 6, or 7 mannose residues. Approximately 6% of the high mannose type structures and 10% of the hybrid structures are phosphorylated, as judged by their susceptibility to treatment with alkaline phosphatase. Compositional analysis of an unlabeled preparation of the protein suggested the presence of approximately 1.4 oligosaccharide units per molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号