首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The administration of glucagon to fed rats by intraperitoneal injection, or the perfusion of livers from fed rats with glucagon by the method of Mortimore [Mortimore (1963) Am.J. Physiol. 204, 699--704] was associated with increases of 15- and 5-fold respectively, in the time for which a given load of exogenous Ca2+ is retained by mitochondria subsequently isolated from the liver. This effect of glucagon was (a) also induced by N6O2'-dibutyryl cyclic AMP, (b) completely blocked by cycloheximide, (c) relatively slow in onset (15--60 min) and (d) associated with a stimulation of about 20% in the rates of ADP-stimulated oxygen utilization and Ca2+ transport measured in the presence of succinate. 2. Perfusion of livers with glucagon resulted in the isolation of mitochandria which showed a 50% increase, no significant change and a 40% increase in the concentrations of endogenous Ca, Mg and Pi respectively, when compared with mitochondria isolated from control perfused livers. 3. The administration of insulin or adrenaline to fed rats induced increases of 10- and 8-fold respectively, in the time for which Ca2+ is retained by isolated liver mitochondria. Perfusion of livers with insulin had no effect on mitochondrial Ca2+ retention time. 4. The perfusion of livers from starved rats with glucagon, or the administration of either glucagon or insulin to starved rats, increased by about 2.5- and 15-fold respectively, the time for which isolated mitochondria retain Ca2+. 5. Mechanisms which may be responsible for the observed alterations in Ca2+-retention time are discussed.  相似文献   

2.
Glucagon stimulates 14CO2 production from [1-14C] glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from [1-14C]glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets.  相似文献   

3.
1. 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (EC 4.1.3.5) in extracts of rat liver mitochondria can be inactivated by succinyl-CoA and activated by incubation in a medium designed to cause desuccinylation ('desuccinylation medium'). 2. The enzyme is less active in extracts of whole liver from control rats than from rats treated with glucagon or mannoheptulose. Incubation in desuccinylation medium raises the activity in extracts from control rats to the same value as treated rats, suggesting that the extent of succinylation in vivo is greater in controls than in hormone-treated animals. 3. This result is also obtained in liver homogenates and in isolated mitochondria. 4. Increasing the succinyl-CoA content of mitochondria to the same high level lowers the enzyme activity to the same value in mitochondria isolated from control or treated rats. In each case subsequent incubation of the lysates in desuccinylation medium raises the enzyme activity by the same extent. 5. Measurement of the incorporation of radiolabel from 2-oxo[5-14C]glutarate into protein is consistent with the proposal that all these changes in activity in isolated mitochondria may be explained by changes in the extent of succinylation of the enzyme. 6. From these data and our earlier work we conclude that, in vivo, mitochondrial HMG-CoA synthase in fed rats is normally substantially succinylated (about 40%) and inactivated, and that glucagon increases the activity of HMG-CoA synthase by lowering the concentration of succinyl-CoA and thus decreasing the extent of succinylation of the enzyme (to less than 10%). This may be an important control mechanism in ketogenesis.  相似文献   

4.
1. Oxygen-consumption rates owing to oxidation of octanoate or octanoylcarnitine by isolated mitochondria from livers of fed, starved and glucagon-treated virgin or 12-day-lactating animals were measured under State-3 and State-4 conditions, in the presence or absence of l-malate and inhibitors of tricarboxylic acid-cycle activity (malonate and fluorocitrate). 2. Mitochondria from fed lactating animals had a slightly lower rate of octanoylcarnitine oxidation than did those of fed virgin animals, whereas the rates of octanoate oxidation were unaffected. 3. Starvation of virgin animals for 24h or 48h resulted in a large (70–100%) increase in mitochondrial octanoylcarnitine oxidation; rates of octanoate oxidation were either unaffected (24 and 48h starvation in the absence of malonate and fluorocitrate) or diminished by 30% (48h starvation in the presence of inhibitors). In lactating animals, 24h starvation resulted in a smaller increase in the rate of octanoylcarnitine oxidation than that obtained for mitochondria from virgin rats. 4. Glucagon treatment (by intra-abdominal injection) of fed virgin and lactating rats increased the rate of mitochondrial oxidation of both octanoylcarnitine and octanoate. Injection of glucagon into 48h-starved virgin rats did not increase further the already elevated rate of octanoylcarnitine oxidation, but reversed the inhibition of octanoate β-oxidation observed for these mitochondria in the presence of malonate and fluorocitrate. 5. It is suggested that glucagon activates octanoylcarnitine oxidation by increasing the activity of the carnitine/acylcarnitine transport system [Parvin & Pande (1979) J. Biol. Chem. 254, 5423–5429] and that the increase in octanoate oxidation by mitochondria from glucagon-treated animals is caused by the increased rate of ATP synthesis in these mitochondria. 6. The results are discussed in relation to the increased capacity of the liver to oxidize long-chain fatty acids and carnitine esters of medium-chain fatty acids under conditions characterized by increased ketogenesis.  相似文献   

5.
The short-term effect of L-tri-iodothyronine (T3) on hepatic Ca2+ uptake from perfusate was compared with changes induced by T3 on cellular respiration and glucose output in isolated perfused livers from fasted and fed rats. The same parameters were also studied after the addition of glucagon or vasopressin. T3 (1 microM) induced Ca2+ uptake from the perfusate into the liver within minutes, and the time course was similar to that for stimulation of respiration and gluconeogenesis in livers from fasted rats, and for the stimulation of respiration and glucose output in livers from fed rats. The effects were dose-dependent in the range 1 microM-0.1 nM. Similar changes in the same parameters could be observed with glucagon and vasopressin, but with a completely different time course. Also, the influence of the T3 analogues L-thyroxine (L-T4), 3,5-di-iodo-L-thyronine (L-T2) and 3,3',5-tri-iodo-D-thyronine (D-T3) on hepatic energy metabolism was examined. Whereas D-T3 had practically no effect, L-T4 and L-T2 caused changes in Ca2+ uptake, O2 consumption and gluconeogenesis in livers from fasted rats similar to those with T3. It is concluded that changes in mitochondrial and cytosolic Ca2+ concentrations are involved in the stimulation of respiration and glucose metabolism observed with T3, glucagon and vasopressin.  相似文献   

6.
The rate of reduction of ferricyanide in the presence and absence of antimycin and ubiquinone-1 was measured using liver mitochondria from control and glucagon treated rats. Glucagon treatment was shown to increase electron flow from both NADH and succinate to ubiquinone, and from ubiquinone to cytochrome c. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was shown to inhibit the oxidation of glutamate + malate to a much greater extent than that of succinate or duroquinol. Spectral and kinetic studies confirmed that electron flow between NADH and ubiquinone was the primary site of action but that the interaction of the ubiquinone pool with complex 3 was also affected. The effects of various respiratory chain inhibitors on the rate of uncoupled oxidation of succinate and glutamate + malate by control and glucagon treated mitochondria were studied. The stimulation of respiration seen in the mitochondria from glucagon treated rats was maintained or increased as respiration was progressively inhibited with DCMU, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO) and colletotrichin, but greatly reduced when inhibition was produced with malonate or antimycin. These data were also shown to support the conclusion that glucagon treatment may cause some stimulation of electron flow through NADH dehydrogenase, succinate dehydrogenase and through the bc1 complex, probably at the point of interaction of the complexes with the ubiquinone pool. The effects of glucagon treatment on duroquinol oxidation and the inhibitor titrations could not be mimicked by increasing the matrix volume, nor totally reversed by aging of mitochondria. These are both processes that have been suggested as the means by which glucagon exerts its effects on the respiratory chain (Armston, A.E., Halestrap, A.P. and Scott, R.D., 1982, Biochim. Biophys. Acta 681, 429-439). It is concluded that an additional mechanism for regulating electron flow must exist and a change in lipid peroxidation of the inner mitochondrial membrane is suggested.  相似文献   

7.
S Yokota 《Histochemistry》1986,85(2):145-155
Differential induction of serine: pyruvate amino-transferase (SPT) in rat liver parenchymal cells by administration of glucagon or di-(2-ethylhexyl)phthalate (DEHP) was studied using post-embedding immunocytochemical techniques and morphometric methods. Two groups of rats were fasted for 5 days and daily received peritoneal injection of glucagon (300 micrograms/100 g) or physiological saline. Another two groups of rats were fed on laboratory chow with or without 2% DEHP for 2 weeks. Livers were perfusion-fixed, cut into tissue sections (50-100 micron), and processed to cytochemistry for catalase, immunocytochemistry for SPT, and conventional procedures for electron microscopy. The morphometric analysis showed that glucagon injection has negligible effect on the volume and numerical density and mean diameter of peroxisomes, whereas volume density of mitochondria was decreased by 25%. By DEHP administration peroxisomes were about 3-fold increased in the volume and numerical density. Mitochondria was increased about 40% in the numerical density, but unchanged in the volume density. Light and electron microscopic immunocytochemistry demonstrated that glucagon injection exclusively enhanced mitochondrial SPT, whereas DEHP administration exclusively induced in peroxisomal SPT. Quantitative analysis showed that by the glucagon injection, the labeling density of mitochondria was increased about 4-fold, but that of peroxisomes was 1.6 times as much as control, while by DEHP administration, the labeling density of peroxisomes was enhanced about 3-fold but that of mitochondria was decreased by 13%. The results clearly indicate that glucagon induces mitochondrial SPT, whereas peroxisome proliferator, DEHP induces peroxisomal SPT.  相似文献   

8.
(1) The effects of changes in the intramitochondrial volume, benzyl alcohol treatment and calcium-induced mitochondrial aging on the behaviour of liver mitochondria from control and glucagon-treated rats are reported. (2) The stimulatory effects of glucagon on mitochondrial respiration, pyruvate metabolism and citrulline synthesis could be mimicked by hypo-osmotic treatment of control mitochondria and reversed by calcium-induced aging of mitochondria or by treatment with 20 mM benzyl alcohol. Hypo-osmotic treatment increased the matrix volume whilst aging but not benzyl alcohol decreased this parameter. (3) Liver mitochondria from glucagon and adrenaline-treated rats were shown to be less susceptible to damage by exposure to calcium than control mitochondria and frequently showed slightly (15%) elevated intramitochondrial volumes. (4) Aging, benzyl alcohol and hypo-osmotic media increased the susceptibility of mitochondria to damage caused by exposure to calcium. (5) Glucagon-treated mitochondria were less leaky to adenine nucleotides than control mitochondria. (6) These results suggest that glucagon may exert its action on a wide variety of mitochondrial parameters through a change in the disposition of the inner mitochondrial membrane, possibly by stabilisation against endogenous phospholipase A2 activity. This effect may be mimicked by an increase in the matrix volume or reversed by calcium-dependent mitochondrial aging.  相似文献   

9.
1. The administration of dexamethasone to intact fed rats by intraperitoneal injection for 3h was associated with a 6-fold increase in the time for which mitochondria subsequently isolated from the liver retain a given load of exogenous Ca2+. This effect was blocked by the co-administration of cycloheximide with dexamethasone, and partially blocked by the co-administration of puromycin. Daily administration of dexamethasone for periods of 4--7 days resulted in liver mitochondria that exhibited a decreased ability to retain exogenous Ca2+. 2. When glucagon was administered to fed adrenalectomized rats, the increase in mitochondrial Ca2+-retention time that results from the action of this hormone was reduced by 50% when compared with its effect on intact animals. The administration of dexamethasone to adrenalectomized rats partially restored the full effect of glucagon. 3. Dexamethasone did not enhance the effect of glucagon on mitochondrial Ca2+-retention time when administered to intact fed rats. 4. It is concluded that these data support the hypothesis that the hormone-induced modification of liver mitochondria, which results in an increase in the time for which exogenous Ca2+ is retained, involves a step in which new protein is synthesized.  相似文献   

10.
Glucagon administration to the intact rat has been shown to stimulate pyruvate metabolism in liver mitochondria, presumably by increasing pyruvate transport into the organelle. In this report, we used alanine in place of pyruvate to examine the possibility that glucagon might stimulate pyruvate carboxylation per se independent of its postulated action on pyruvate transport. In agreement with previous reports, injection of a low dose of glucagon (50 micrograms/kg of rat) increased respiration, ATP synthesis, pyruvate decarboxylation, and CO2 fixation in liver mitochondria subsequently isolated. When alanine was used as a substrate, CO2 fixation, but not decarboxylation, was increased in liver mitochondria isolated from glucagon-treated rats. Pyruvate accumulation under these conditions was significantly lower in the glucagon-treated rat preparation. When mitochondria were incubated in a HCO3- -deficient buffer, pyruvate accumulation was identical in both preparations. The addition of a pyruvate transport inhibitor, alpha-cyanohydroxycinnamate (0.5 mM), inhibited CO2 fixation with pyruvate by 70%, but had no effect when alanine was used. Our data therefore suggest that glucagon stimluates mitochondrial pyruvate carboxylation independent of its possible action on pyruvate transport.  相似文献   

11.
Mannoheptulose (2g/kg i.p.) increases serum glucagon and decreases serum insulin via its effect on pancreatic islet cells. These changes in endogenous hormone status had effects on rat liver mitochondria that were comparable to the effects of injecting porcine glucagon (0.5 mg/kg i.p.). Mitochondrial adenine nucleotide content was increased 38 or 39% by mannoheptulose or glucagon respectively, citrulline synthesis by 165 or 193%, pyruvate carboxylation by 113 or 135%, coupled respiration by 34 or 42%, and uncoupled respiration by 40 or 54%. We conclude that the reciprocal changes in endogenous insulin and glucagon brought about by mannoheptulose offer a useful and interesting alternative to glucagon injection for studying the effects of these pancreatic hormones on liver mitochondria.  相似文献   

12.
Morphological observations in some tissues indicate that dietary copper deficiency results in structural damage to mitochondria. The purpose of this study was to determine whether mitochondrial function is impaired as well. Male, weanling Sprague-Dawley rats were fed diets deficient or sufficient in copper for 4 weeks. Mitochondria were isolated from heart, liver, kidney cortex, and kidney medulla. P/O ratio, state 3 and state 4 respiration rates (oxygen consumed in the presence and absence of ADP, respectively), and acceptor control index (ratio of state 3:state 4) were determined using succinate or pyruvate/malate as substrate. State 3 respiration rate in mitochondria from copper-deficient hearts and livers was lower than in mitochondria from copper-sufficient hearts. Copper deficiency reduced the state 4 respiration rate only in cardiac mitochondria. Neither respiration rate was affected by copper deficiency in mitochondria from kidney medulla or cortex. P/O ratio was not significantly affected by copper deficiency in any tissue examined. Acceptor control index was reduced only in liver mitochondria. The observed decreases in respiration rates are consistent with decreased cytochrome c oxidase activity, shown by others to occur in mitochondria isolated from hearts and livers of copper-deficient rats.  相似文献   

13.
1. The administration of glucagon or N6O2'-dibutyryl cyclic AMP to fed rats by intraperitoneal injection was associated with a 2-fold increase in the amounts of endogenous Pi and ATP, and an increase in the rate and extent of transport of exogenous Pi (measured in either the presence or the absence of Ca2+) in mitochondria subsequently isolated from the liver. No change was observed in either the maximum rate of transport of exogenous Pi or in the rate of 32Pi exchange. 2. The changes induced by glucagon and dibutyryl cyclic AMP were markedly decreased by the co-administration of cycloheximide. 3. The administration of insulin to rats resulted in an increase of about 1.3-fold in the concentration of endogenous mitochondrial Pi 4. The amounts of endogenous Pi in mitochondrial isolated from the livers of starved rats were 3 times those in mitochondria isolated from fed animals. 5. It is concluded that the liver mitochondrial phosphatetransport system may be an important site of hormone action. 6. In the course of these experiments, it was shown that Ca2+ markedly stimulates mitochondrial phosphate transports.  相似文献   

14.
Mitochondria isolated from livers of rats treated briefly with glucagon show an increased ATPase activity in the presence of appropriate concentrations of protonophoric uncouplers (Yamazaki, R. K., Sax, R.D., and Hauser, M.A. (1977) FEBS Lett. 75, 295-299). With the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) the effect of glucagon treatment was most evident at concentrations of uncoupler higher than required for maximal stimulation of ATPase in control mitochondria. In this range of FCCP concentrations that produced the greatest contrast in ATPase activity of control and hormone-stimulated mitochondria, there were no significant differences in delta pH, delta psi, or delta p between the two groups. The presence of added succinate in the ATPase assay system mimicked the effect of glucagon treatment, permitting greater activity at high concentrations of uncoupler without significantly affecting delta p. No significant effect of glucagon treatment or uncoupler concentrations on mitochondrial volumes was observed. Following treatment with glucagon, the mitochondria retained a greater content of Mg+ and K+ throughout the range of FCCP concentrations tested. In the upper range of FCCP concentrations there was appreciable loss of K+ from the mitochondria which was greater in control mitochondria than in mitochondria from glucagon-treated rats or in mitochondria assayed in the presence of succinate. The activity of the uncoupler-dependent ATPase was greatly stimulated by increased concentrations of potassium chloride in the assay medium without significantly diminishing the hormone effect. It is proposed that the intrinsic peptide inhibitor of ATPase is dissociated from the enzyme to an increased degree following glucagon treatment and that high levels of uncoupler inhibit by causing an increased association of the enzyme and its inhibitor.  相似文献   

15.
Glucagon has been postulated as an important physiological regulator of histidase (Hal) gene expression; however, it has not been demonstrated whether serum glucagon concentration is associated with the type and amount of protein ingested. The purpose of the present work was to study the association between hepatic Hal activity and mRNA concentration in rats fed 18 or 50% casein, isolated soy protein, or zein diets in a restricted schedule of 6 h for 10 days, and plasma glucagon and insulin concentrations. On day 10, five rats of each group were killed at 0900 (fasting), and then five rats were killed after being given the experimental diet for 1 h (1000). Rats fed 50% casein or soy diets showed higher Hal activity than the other groups studied. Rats fed 50% zein diets had higher Hal activity than rats fed 18% casein, soy, or zein diets, but lower activity than rats fed 50% casein or soy diets. Hal mRNA concentration followed a similar pattern. Hal activity showed a significant association with serum concentrations of glucagon. Serum glucagon concentration was significantly correlated with protein intake. Thus the type and amount of protein consumed affect Hal activity and expression through changes in serum glucagon concentrations.  相似文献   

16.
Abstract— The effects of altered osmolality on respiration and fine structure were studied in isolated cerebral mitochondria from mature rats (60-100 days of age) and from rat pups in the first month of postnatal life (5, 10, 20 and 30 days). In the mature cerebral mitochondria, ADP-dependent respiration was inhibited in media of decreased osmolality. There was a transient inhibition of ADP-dependent respiration and a sustained increase in ADP-independent respiration in media of increased osmolality. In contrast, cerebral mitochondria from 5-day-old rats showed both inhibition of ADP-dependent respiration and increased ADP-independent respiration in hypo-osmolal media. In these mitochondria, inhibition of ADP-dependent respiration was stable and ADP-independent respiration was unchanged in media of increased osmolality. The transition to the mature respiratory response occurring with altered osmolality took place between 10 and 30 days of age. During this same age period, cerebral mitochondria showed an increasing resistance to matrix condensation in media of normal and increased osmolality.  相似文献   

17.
Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria.  相似文献   

18.
1. The metabolism of palmitate and especially of erucate was studied in hepatocytes isolated from rats fed for 3 weeks a diet containing peanut oil (diet, 1), rapeseed oil (diet 2) and partially hydrogenated marine oil (diet 3). 2. The metabolism of palmitate was not significantly influenced by the diet. The rapeseed oil diet caused 1.4 fold and 1.3 fold increase and marine oil diet 3 fold and 2.2 fold increase in the oxidation and chain-shortening respectively of [14-14C]erucic acid in isolated hepatocytes. 3. Cyanide and antimycin A did not inhibit the chain-shortening of erucate in liver cells of rats fed rapeseed oil and peanut oil. The high capacity of the chain-shortening system in hepatocytes of marine oil-fed rats was partially inhibited. 4. Inhibition of the transfer of fatty acids into the mitochondria by lowering the intracellular carnitine concentration and/or by addition of (+)-decanoyl-carnitine resulted in a very pronounced apparent stimulation of the chain-shortening of erucic acid. It is suggested that the chain-shortening system may be virtually independent of the mitochondria, unless the availability of the extramitochondria NAD+ and/or NADP+ is rate-limiting under conditions of extremely low redox potential of the mitochondria. 5. Feeding marine oil or rapeseed oil to the rats induced a 30% increase in catalase activity, a 25--30% increase in urate oxidase activity and a 50% increase in the total CoA in the liver compared to rats fed peanut oil. 6. It is suggested that the increased metabolism of erucate in hepatocytes of marine oil and rapeseed oil-fed rats may be due to the increase in ther peroxisomal beta-oxidation.  相似文献   

19.
The effect of glucagon on hepatic respiratory capacity   总被引:1,自引:0,他引:1  
Data from numerous laboratories show that mitochondria isolated from livers treated acutely with glucagon have higher rates of state 3 respiration than control mitochondria. The purpose of the present study was to learn whether this phenomenon is an isolation artifact resulting from a stabilization of the mitochondrial membrane or whether it represents a real increase in the maximal respiratory capacity of liver cells due to glucagon treatment. Electron transport was measured through different spans of the electron transport chain by using ferricyanide as an alternate electron acceptor to O2. With isolated intact liver mitochondria, pretreatment with glucagon was found to cause an increase in electron flow, through both Complex I and Complex III, suggesting that the effect of glucagon was not specific for a single site in the electron transport chain. Using intact isolated hepatocytes, different results are obtained. Respiration was measured in isolated hepatocytes after quantitation of the hepatocyte mitochondrial content by assay of citrate synthase. Hepatocyte respiration could therefore be reported per mg of mitochondrial protein. By providing durohydroquinone to the cells, it was possible to measure electron flow from coenzyme Q to O2 in the absence of the physiological regulation of substrate supply. Likewise, the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone released the in situ mitochondria from control by the cytosolic ATP/ADP ratio and it was possible to measure maximal electron flow rates through Complex III. In the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, electron flow was higher in mitochondria in the cell than in isolated mitochondria. Glucagon caused no increase in mitochondrial respiration in situ either in the presence of the physiological substrates or in the presence of durohydroquinone. The data obtained do not support a role for the electron transport chain as a target of glucagon action in hepatocytes.  相似文献   

20.
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号