首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurements of photocurrent and outer segment Ca2+ were made from isolated salamander cone photoreceptors. While recording the photocurrent from the inner segment, which was drawn into a suction pipette, a laser spot confocal technique was employed to evoke fluorescence from the outer segment of a cone loaded with the Ca2+ indicator fluo-3. When a dark-adapted cone was exposed to the intense illumination of the laser, the circulating current was completely suppressed and fluo-3 fluorescence rapidly declined. In the more numerous red-sensitive cones this light-induced decay in fluo-3 fluorescence was best fitted as the sum of two decaying exponentials with time constants of 43 ± 2.4 and 640 ± 55 ms (mean ± SEM, n = 25) and unequal amplitudes: the faster component was 1.7-fold larger than the slower. In blue-sensitive cones, the decay in fluorescence was slower, with time constants of 140 ± 30 and 1,400 ± 300 ms, and nearly equal amplitudes. Calibration of fluo-3 fluorescence in situ from red-sensitive cones allowed the calculation of the free-Ca2+ concentration, yielding values of 410 ± 37 nM in the dark-adapted outer segment and 5.5 ± 2.4 nM after saturating illumination (mean ± SEM, n = 8). Photopigment bleaching by the laser resulted in a considerable reduction in light sensitivity and a maintained decrease in outer segment Ca2+ concentration. When the photopigment was regenerated by applying exogenous 11-cis-retinal, both the light sensitivity and fluo-3 fluorescence recovered rapidly to near dark-adapted levels. Regeneration of the photopigment allowed repeated measurements of fluo-3 fluorescence to be made from a single red-sensitive cone during adaptation to steady light over a range of intensities. These measurements demonstrated that the outer segment Ca2+ concentration declines in a graded manner during adaptation to background light, varying linearly with the magnitude of the circulating current.  相似文献   

2.
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K 1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K 1/2 for cGMP is 335.5 ± 64.4 μM in the presence of 20 μM Ca2+, and 84.3 ± 12.6 μM in its absence. For 8Br-cGMP, K 1/2 is 72.7 ± 11.3 μM in the presence of 20 μM Ca2+ and 15.3 ± 4.5 μM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K 1/2 for 8Br-cGMP is 17.9 ± 3.8 μM in the presence of 20 μM Ca2+ and 7.2 ± 1.2 μM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 μM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at K Ca = 286 ± 66 nM Ca2+. In rods, by contrast, K Ca is ∼50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.  相似文献   

3.
4.
蓝光、紫外光的受体及其对CHS表达诱导的研究   总被引:13,自引:1,他引:13  
王曼  王小菁 《植物学通报》2002,19(3):265-271
植物在进化过程中形成了对环境信号反应的能力,光是植物生长发育中的一个重要的环境信号,综述了蓝光,紫外光的受体及蓝光,紫外光对编码植物类黄酮合成中的一个重要的限速酶-苯基苯乙烯酮合酶基因CHS的诱导作用,并介绍该反应信号转导的可能组分。  相似文献   

5.
The molecular cloning of calcium channel subunits has identified an unexpectedly large number of genes and splicing variants, many of whichhave complex expression patterns: a central problem of calcium channel biology is to understand the functional significance of this genetic complexity. The genetic analysis of voltage-dependent calcium channels (VDCCs) provides an approach to defining channel function that is complimentary to pharmacological, electrophysiological, and other molecular methods. By discovering or creating alleles of VDCC genes, one can gain an understanding of the VDCC function at the whole animal level. Of particular interest are mutations in the alpha1 genes that encode the pore forming subunits, as they define the specific channel subtypes. In fact, a variety of calcium channelopathies and targeted mutations have been described for these genes in the last 6 years. The mutant alleles described below illustrate how phenotype analysis of these alleles has uncovered very specific functional roles that can be localized to specific synapses or cells.  相似文献   

6.
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly saturate the amplitude of their photoresponse. In search of a molecular explanation for this observation we assessed Ca2+-dependent modulation of ligand sensitivity in cyclic GMP-gated (CNG) ion channels of intact mammalian rods and cones. Solitary photoreceptors were isolated by gentle proteolysis of ground squirrel retina. Rods and cones were distinguished by whether or not their outer segments bind PNA lectin. We measured membrane currents under voltage-clamp in photoreceptors loaded with Diazo-2, a caged Ca2+ chelator, and fixed concentrations of 8Br-cGMP. At 600 nM free cytoplasmic Ca2+ the midpoint of the cone CNG channels sensitivity to 8BrcGMP, 8BrcGMPK1/2, is approximately 2.3 microM. The ligand sensitivity is less in rod than in cone channels. Instantly decreasing cytoplasmic Ca2+ to <30 nM activates a large inward membrane current in cones, but not in rods. Current activation arises from a Ca2+ -dependent modulation of cone CNG channels, presumably because of an increase in their affinity to the cyclic nucleotide. The time course of current activation is temperature dependent; it is well described by a single exponential process of approximately 480 ms time constant at 20-21 degrees C and 138 ms at 32 degrees C. The absence of detectable Ca2+-dependent CNG current modulation in intact rods, in view of the known channel modulation by calmodulin in-vitro, affirms the modulation in intact rods may only occur at low Ca2+ concentrations, those expected at intensities that nearly saturate the rod photoresponse. The correspondence between Ca2+ dependence of CNG modulation and the ability to light adapt suggest these events are correlated in photoreceptors.  相似文献   

7.
Vertebrate rod photoreceptors adjust their sensitivity as they adapt during exposure to steady light. Light adaptation prevents the rod from saturating and significantly extends its dynamic range. We examined the time course of the onset of light adaptation in bullfrog rods and compared it with the projected onset of feedback reactions thought to underlie light adaptation on the molecular level. We found that adaptation developed in two distinct temporal phases: (1) a fast phase that operated within seconds after the onset of illumination, which is consistent with most previous reports of a 1-2-s time constant for the onset of adaptation; and (2) a slow phase that engaged over tens of seconds of continuous illumination. The fast phase desensitized the rods as much as 80-fold, and was observed at every light intensity tested. The slow phase was observed only at light intensities that suppressed more than half of the dark current. It provided an additional sensitivity loss of up to 40-fold before the rod saturated. Thus, rods achieved a total degree of adaptation of approximately 3,000-fold. Although the fast adaptation is likely to originate from the well characterized Ca(2+)-dependent feedback mechanisms regulating the activities of several phototransduction cascade components, the molecular mechanism underlying slow adaptation is unclear. We tested the hypothesis that the slow adaptation phase is mediated by cGMP dissociation from noncatalytic binding sites on the cGMP phosphodiesterase, which has been shown to reduce the lifetime of activated phosphodiesterase in vitro. Although cGMP dissociated from the noncatalytic binding sites in intact rods with kinetics approximating that for the slow adaptation phase, this hypothesis was ruled out because the intensity of light required for cGMP dissociation far exceeded that required to evoke the slow phase. Other possible mechanisms are discussed.  相似文献   

8.
Abstract: Malonate is a reversible inhibitor of succinate dehydrogenase (SDH) that produces neurotoxicity by an N -methyl- d -aspartate (NMDA) receptor-dependent mechanism. We have examined the influence of pharmacological manipulation of membrane potential on striatal malonate toxicity in rats in vivo by analysis of lesion volume. Depolarization caused by coinjection of the Na+,K+-ATPase inhibitor ouabain or a high concentration of potassium greatly exacerbated malonate toxicity; this combined toxicity was blocked by the noncompetitive NMDA antagonist MK-801. The toxicity of NMDA was also exacerbated by ouabain. The overt toxicity of a high dose of ouabain (1 nmol) was largely prevented by MK-801. Coinjection of the K+ channel activator minoxidil (4 nmol) to reduce depolarization attenuated the toxicity of 1 µmol of malonate by ∼60% without affecting malonate-induced ATP depletion. These results indicate that membrane depolarization exacerbates malonate neurotoxicity and that membrane hyperpolarization protects against malonate-induced neuronal damage. We hypothesize that the effects of membrane potential on malonate toxicity are mediated through the NMDA receptor as a result of its combined agonist- and voltage-dependent properties.  相似文献   

9.
Simultaneous video-microfluorimetry allows experimenters to monitor calcium signals in the cytosol, as well as changes in the membrane potential of the mitochondria, in living cells loaded with both fura2 and rhodamine123 (rhod123). Capsaicin-evoked responses of cultured sensory neurons and transfected HT1080 cells are described below. Polymodal nociceptors [1] or other cells expressing TRPV1 receptors respond to capsaicin application with a rise in the cytosolic calcium level ([Ca2+]c), reaching eventually toxic levels. Capsaicin induces selective permanent morphological changes of the mitochondria before any loss of small cells (type B) in the sensory ganglia can be detected [3]. An unknown link between changes in the mitochondria and cell loss can be investigated by combined functional examination of capsaicin-induced [Ca2+]c changes and reactions of the mitochondria. In most tests, the capsaicin-induced [Ca2+]c elevation occurred before the rising phase of rhod123 waves. Cellular reactions were either transient or sustained (lasting over hundreds of seconds). A transient or a sustained nature of the reactions was slightly concentration-dependent. Fluorescence of the cells changed in complicated ways during repeated tests. Moderate but permanent changes of the cellular responsiveness suggest mild injury, which might be involved in cellular desensitization.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 82–93, January–February, 2005.  相似文献   

10.
Ganglioside Function in Calcium Homeostasis and Signaling   总被引:1,自引:0,他引:1  
Ganglioside function in eukaryotic cells encompasses a variety of modulatory interactions related to both development and mature cellular behavior. In relation to the nervous system this includes induction of neurite outgrowth and trophic/neuroprotective phenomena; more generally this applies to ganglioside effects on receptor function, adhesion reactions, and signal transduction mechanisms in neural and extraneural systems. Underlying many of these trophic effects are ganglioside-induced changes in cellular calcium, accomplished through modulation of Ca2+ influx channels, Ca2+ exchange proteins, and various Ca2+-dependent enzymes that are altered through association with gangliosides. A clear distinction needs to be drawn between intrinsic functions of gangliosides as naturally expressed by the cell and activities created by application of exogenous ganglioside(s) that may or may not reflect natural function. This review attempts to summarize findings in this area and point to possible future directions of research.  相似文献   

11.
The physical origin and functional significance of the near infra-red light scattering changes observable upon flash illumination of diluted suspensions of magnetically oriented, permeabilised frog retinal rods has been reinvestigated with particular attention paid to the degree with which transducin remains attached to the membrane. In the absence of GTP, the so called binding signal is shown to include two components of distinctive origins, widely different kinetics, and whose relative amplitudes depend on the dilution of the suspension and resulting detachment of transducin from the disc membrane. The fast component is a consequence of the fast interaction between photoexcited rhodopsin (R*) and the transducin remaining on the membrane. Its kinetics monitors a structural modification of the discs caused by a change in electrostatic interaction between closely packed membranes upon the formation of R*-T complexes. The slow component monitors the slow rebinding to the membrane and possible subsequent interaction with excess R* of T-GDP which, in spite of its low solubility, had eluted into solution given the high dilution of the permeated rods. In the presence of GTP, the so called dissociation signal includes a fast, anisotropic release component that specifically monitors the release into the interdiscal space of T -GTP formed from the membrane-bound pool, and a slower isotropic loss component monitoring the leakage from the permeated rod of the excess T -GTP which did not interact with the cGMP phosphodiesterase. The amplitudes of both components depend exclusively on the membrane bound T-GDP pool. The kinetics of the loss component is limited by the size and degree of permeation of the rod fragments, rather than by the dissociation rate of T -GTP from the membrane.Abbreviations ROS rod outer segment - R rhodopsin - R* photoactivated rhodopsin - T, T-GDP, T -GDP, T -GTP, T transducin and its various forms - T mb, T sol: T bound to membrane or soluble - PDE cGMP-phosphodiesterase - GTP guanosine 5-triphosphate - GDP guanosine 5-diphosphate - GDP S guanosine 5-O-(2-thiodiphosphate) - cGMP guanosine-3-5 cyclic-monophosphate - DTT dithiothreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid - TRIS Tris (hydroxymethyl)aminomethane - SDS sodium dodecyl sulfate  相似文献   

12.
目的:构建表达基因编辑钙探针(GECIs)的细胞系HeLa-GECIs,探究细胞应答外界ATP刺激中钙离子在细胞内的响应和变化。方法:分别用能够直接通过荧光强度反映细胞胞浆内和线粒体内钙离子相对浓度的2种钙探针cyto-GCaMP6和4mt-GCaMP6感染HeLa细胞,获得2种表达钙离子探针的HeLa细胞系;在感染了2种腺病毒探针24 h后,用共聚焦荧光显微镜检测荧光探针在HeLa细胞内的表达情况;在表达2种钙探针的细胞的培养基中加入外源ATP,用Time-lapse成像动态观测技术观察HeLa细胞内钙离子对外环境中ATP的响应。结果:共聚焦荧光显微镜观察,确定95%以上的细胞表达了对应的钙离子指示荧光探针;Time-lapse成像动态观测技术观察发现,在细胞培养基中加入ATP后,细胞胞浆钙探针荧光强度瞬时(3~6 s)升至10倍,200 s后逐渐降低到基础水平;线粒体钙到达峰值(4倍)的时间稍滞后(5~8 s),并且回落更慢,300 s时至1.5倍。在ATP受体P2X7抑制剂A438079预处理的实验组,上述胞浆钙和线粒体钙浓度上升不明显。结论:构建了能在活体细胞内通过荧光探针实时监测钙离子响应胞外ATP刺激的细胞实验体系,为进一步深入探究ATP等危险信号导致细胞的炎性损伤机制奠定了基础。  相似文献   

13.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

14.
Calcium ions are the most ubiquitous and versatile signaling molecules in eukaryotic cells. Calcium homeostasis and signaling systems are crucial for both the normal growth of the budding yeast Saccharomyces cerevisiae and the intricate working of the mammalian heart. In this paper, we make a detailed comparison between the calcium homeostasis/signaling networks in yeast cells and those in mammalian cardiac myocytes. This comparison covers not only the components, structure and function of the networks but also includes existing knowledge on the measured and simulated network dynamics using mathematical models. Surprisingly, most of the factors known in the yeast calcium homeostasis/signaling network are conserved and operate similarly in mammalian cells, including cardiac myocytes. Moreover, the budding yeast S. cerevisiae is a simple organism that affords powerful genetic and genomic tools. Thus, exploring and understanding the calcium homeostasis/signaling system in yeast can provide a shortcut to help understand calcium homeostasis/signaling systems in mammalian cardiac myocytes. In turn, this knowledge can be used to help treat relevant human diseases such as pathological cardiac hypertrophy and heart failure.  相似文献   

15.
钙稳态失衡与癌细胞抑制   总被引:3,自引:0,他引:3  
细胞胞浆钙离子浓度必须处于严格的调控之中,钙稳态失调必将导致细胞严重损伤或死亡(凋亡或坏死).综述了钙稳态失调在外界因素引起细胞死亡中的作用、直接钙稳态失调的细胞死亡效应、以及钙离子在细胞凋亡中的作用,并讨论了上述作用的机制,最后在总结基础上提出了一种抑癌新途径——选择性引发癌细胞钙稳态失衡.  相似文献   

16.
钙离子作为第二信使参与多种途径的调控,钙离子结合蛋白在此过程中起着重要的作用.通过对钙离子结合蛋白的分布特征、结构分析,新的成员以及新的功能不断地被发现.在疾病发生过程中,钙离子结合蛋白动态平衡的破坏与线粒体的异常、自由基的损害有密切的关系,并已在多种疾病特别是神经系统的疾病中得到了证实.本文就钙离子结合蛋白的特征以及在主要神经系统疾病中作用的研究进展进行简要综述.  相似文献   

17.
Calcium homeostasis and dichlorvos induced neurotoxicity in rat brain   总被引:3,自引:0,他引:3  
The present study was designed to investigate the possible effects of chronic dichlorvos exposure on the various aspects of calcium homeostasis in rat brain. Chronic dichlorvos administration caused significant rise in the intrasynaptosomal calcium levels. The activity of major calcium expelling enzyme i.e. Ca2+ ATPase was found to be declined. Also, the depolarization induced calcium uptake via voltage operated calcium channels increased significantly. Concomitant to the increase in intrasynaptosomal calcium, calpain activity was found to be increased. The results presented herein, indicate that the toxic effects of dichlorvos could be mediated through modifications in the intracellular calcium homeostasis which may lead to impaired neuronal function.  相似文献   

18.
白念珠菌是临床重要的条件致病菌,其胞内的钙稳态及钙信号途径与宿主侵染、压力应答等诸多生理过程紧密相关。研究该菌的钙稳态系统及钙信号调控网络,对明确白念珠菌的侵染机制与耐药机理,以及开发具有新靶点的抗真菌药物具有重要意义。本文对这些内容的研究进展进行了综述。  相似文献   

19.
Mitochondria have a well-established capacity to detect cytoplasmic Ca2+ signals resulting from the discharge of ER Ca2+ stores. Conversely, both the buffering of released Ca2+ and ATP production by mitochondria are predicted to influence ER Ca2+ handling, but this complex exchange has been difficult to assess in situ using conventional measurement techniques. Here we have examined this interaction in single intact BHK-21 cells by monitoring intraluminal ER [Ca2+] directly using trapped fluorescent low-affinity Ca2+ indicators. Treatment with mitochondrial inhibitors (FCCP, antimycin A, oligomycin, and rotenone) dramatically prolonged the refilling of stores after release with bradykinin. This effect was largely due to inhibition of Ca2+ entry pathways at the plasma membrane, but a significant component appears to arise from reduction of SERCA-mediated Ca2+ uptake, possibly as a consequence of ATP depletions in a localized subcellular domain. The rate of bradykinin-induced Ca2+ release was reduced to 51% of control by FCCP. This effect was largely overcome by loading cells with BAPTA-AM, highlighting the importance of mitochondrial Ca2+ buffering in shaping the release kinetics. However, mitochondria-specific ATP production was also a significant determinant of the release dynamic. Our data emphasize the localized nature of the interaction between these organelles, and show that competent mitochondria are essential for generating explosive Ca2+ signals.  相似文献   

20.
The purpose of this study was to clarify a previously controversial issue concerning glutamate (Glu) immunoreactivity (IR) in the inner segment (IS) of photoreceptors by using in vivo cryotechnique (IVCT) followed by freeze substitution (FS), which enabled us to analyze the cells and tissues reflecting living states. Eyeballs from anesthetized mice were directly frozen using IVCT. The frozen tissues were processed for FS fixation in acetone containing chemical fixatives, and embedded in paraffin. Deparaffinized sections were immunostained with an anti-Glu antibody. The strongest Glu-IR was obtained in the specimens prepared by FS with paraformaldehyde or a low concentration of glutaraldehyde, whereas no Glu-IR was obtained without the chemical fixatives. The Glu was immunolocalized in the IS, outer and inner plexiform and ganglion cell layers. Thus, the immunolocalization of Glu in the IS was clearly demonstrated using IVCT. (J Histochem Cytochem 57:883–888, 2009)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号