首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.  相似文献   

2.
For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.  相似文献   

3.
The cannabinoid receptor 1 (CB1) cannabinoid receptor is an essential component of the cannabinergic system. It has been recognized as a therapeutic target for treating numerous diseases and is currently receiving considerable attention by the pharmaceutical community. Target-based drug design, utilizing three-dimensional information of receptor structure and ligand-binding motifs, requires significant amounts of purified protein. To facilitate the purification of CB1, we have expressed the receptor fused to various epitope tags using the baculovirus expression system. In addition, expression levels and ligand-binding profiles corresponding to the expressed fusion proteins have been compared. C-terminal histidine (His)-tagged CB1 gave a Bmax higher than most other systems previously reported in the literature, and was selected for subsequent metal affinity chromatography purification and mass spectroscopic (MS) analysis. Moreover, cells expressing C-terminal His-tagged CB1 were shown to inhibit forskolin-stimulated cyclic adenosine 3',5'-monophosphate (cAMP) production in a concentration-dependent manner in the presence of CP-55,940, confirming the expressed receptor's functional characteristics. A Western blot analysis of the purified receptor showed several forms of CB1, the most abundant being a 57 kDa monomeric protein. The purified CB1 preparations were subjected to protein digestion followed by MS. Fragments corresponding to >70% of the receptor were identified by this method, confirming the identity and purity of the expressed protein. The work presented here demonstrates that epitope-tagged CB1 can be expressed in sufficient amounts and purified to homogeneity for MS analysis. Moreover, these results will serve as a basis for future experiments aimed at characterizing the ligand-binding domains using covalently reacting receptor probes.  相似文献   

4.
Exendin-4 is a naturally occurring 39 amino acid peptide that is useful for the control of Type 2 diabetes. Recombinant Exendin-4, with an extra glycine at the carboxy-terminus (Exdgly), was expressed in the methylotropic yeast Pichia pastoris. A high proportion of the Exdgly molecules secreted into medium were found to be clipped, lacking the first two amino acids (His–Gly) from the N-terminus. Disruption of the P. pastoris homolog of the Saccharomyces cerevisiae dipeptidyl aminopeptidase (STE13) gene in Pichia genome resulted in a clone that expressed N-terminally intact Exdgly. Elimination of N-terminal clipping enhanced the yield and simplified the purification of Exdgly from P. pastoris culture supernatant.  相似文献   

5.
The human bradykinin B2 receptor (B2R) fused with green fluorescent protein (GFP) at the C-terminal has been expressed in the methylotrophic yeast Pichia pastoris. In the expression vector, B2R gene was driven under the highly inducible promoter of alcohol oxidase 1 gene of P. pastoris. By fluorescence activated cell sorting (FACS) analysis and Western blot analysis, it was proved that B2R recombinant receptor proteins were expressed at a high level in the yeast. Furthermore, the transformants of P. pastoris were monitored with confocal microscopy, a strong green fluorescence was checked out. The recombinant B2R receptor proteins were mainly located on the plasma membrane proved by immunofluorescence microscopy. The text was submitted by the authors in English.  相似文献   

6.
The three beta adrenergic receptor subtypes, β1-, β2- and β3-, were expressed in the methylotrophic yeast Pichia pastoris. These receptors were N-terminally fused to the enhanced green fluorescent protein (EGFP) and the fluorescent properties of EGFP were used: (1) to select the recombinant strains, (2) to monitor the expression of the fluorescent receptors, and (3) to monitor the purification of the receptors by immobilized metal affinity chromatography. We demonstrate here that Pichia pastoris can be an alternative host to express and purify milligram amounts of human beta adrenergic receptors.  相似文献   

7.
8.
To develop an approach to obtain milligram quantities of purified isotope-labeled seven transmembrane G-protein coupled cannabinoid (CB) receptor for NMR structural analysis, we chose a truncated CB receptor fragment, CB2(180-233), spanning from the fifth transmembrane domain (TM5) to the associated loop regions of cannabinoid CB2 receptor. This highly hydrophobic membrane protein fragment was pursued for developmental studies of membrane proteins through expression and purification in Escherichia coli. The target peptide was cloned and over-expressed in a preparative scale as a fusion protein with a modified TrpDeltaLE1413 (TrpLE) leader sequence and a nine-histidine tag at its N-terminal. An experimental protocol for enzyme cleavage was developed by using Factor Xa to remove the TrpLE tag from the fusion protein. A purification process was also established using a nickel affinity column and reverse-phase HPLC, and then monitored by SDS-PAGE and MS. This expression level is one of the highest reported for a G-protein coupled receptor and fragments in E. Coli, and provided a sufficient amount of purified protein for further biophysical studies.  相似文献   

9.
Easy and low-cost protein purification methods for the mass production of commonly used enzymes that play important roles in biotechnology are in high demand. In this study, we developed a fast, low-cost recombinant protein purification system in the methylotrophic yeast Pichia pastoris using the family 3 cellulose-binding module (CBM3)-based affinity tag. The codon of the cbm3 gene from Clostridium thermocellum was optimized based on the codon usage of P. pastoris. The CBM3 tag was then fused with enhanced green fluorescent protein (CBM3-EGFP) or with inulinase and expressed in P. pastoris to demonstrate its ability to function as an affinity tag in a yeast expression system. We also examined the effects of glycosylation on the secreted CBM3-tag. The secreted wild-type CBM3-EGFP was glycosylated; however, this had little influence on the adsorption of the fusion protein to the regenerated amorphous cellulose (RAC; maximum adsorption capacity of 319 mg/g). Two CBM3-EGFP mutants lacking glycosylation sites were also constructed. The three CBM3-EGFPs expressed in P. pastoris and the CBM3-EGFP expressed in Escherichia coli all had similar RAC adsorption capacity. To construct a tag-free recombinant protein purification system based on CBM3, a CBM3-intein-EGFP fusion protein was expressed in P. pastoris. This fusion protein was stably expressed and the self-cleavage of intein was efficiently induced by DTT or l-cysteine. In this study, we were able to purify the recombinant fusion protein with high efficiency using both intein and direct fusion-based strategies.  相似文献   

10.
While the methylotrophic yeast Pichia pastoris enables the industrial‐scale biosynthesis of many recombinant products, large amount of nutrient‐rich biomass emerged along this process. Polysaccharides, especially glucans that are abundant in the cell wall of P. pastoris, are yet to be better utilized owing to their various biological activities. However, the isolation and purification of cell wall glucan from P. pastoris has not been reported. In this study, we established an environment‐friendly approach, including induced autolysis, hot‐water treatment, ultrasonication, isopropanol extraction, and protease treatment, to isolate and purify glucan from the cell wall of P. pastoris. We achieved a purity of 85.3% and a yield of 11.7% for the purified glucan. Proteins, nucleic acids, lipids, and ash were efficiently removed during the purification. The activities of the purified glucan were investigated in mice fed with a high‐fat diet. The purified glucan decreased the level of total cholesterol and triglycerides by 30.3 and 29.7%, respectively. This result suggested that the cell wall glucan of P. pastoris could be developed to a therapeutic agent for dyslipidemia. Our study proposed an environment‐friendly and effective method to isolate and purify the glucan from P. pastoris, providing solid foundation for the high‐value utilization of this yeast.  相似文献   

11.
The cannabinergic system is present in a variety of organs and tissues that perform a wide range of essential physiologic functions making it an inherently important therapeutic target for drug discovery. In order to augment our knowledge regarding the interactions between cannabinoid receptors (CBs) and their ligands, efficient and effective tools are essential for robust expression and purification of these membrane-bound proteins. In this report, we describe a suitable method for purification of the human cannabinoid receptor 2 (CB2) to a qualitative and quantitative level sufficient for mass spectral analysis. We utilized a baculovirus expression system, incorporating several epitope tags to facilitate purification and to ameliorate the effect the tags have on CB2 expression and function. Expressed protein encoded by a carboxy (C)-terminal His-tagged CB2 construct displayed a B(max) value of 9.3 pmol/mg with a K(D) of 7.30 nM using [3(H)]CP-55(940), a standard cannabinoid radioligand, and was selected for subsequent purification experiments. Western blot analysis of purified membrane protein yielded several forms of CB2, the most abundant being a 41 kDa peptide. A second protein species was observed with an apparent molecular weight of 46 kDa representing a glycosylated form of CB2. In addition, a CB2 homodimer was also identified. The purified receptor was subjected to mass spectroscopic analysis to confirm its identity and purity. Mass spectra corresponding to the intracellular, extracellular and transmembrane domains were obtained. These experiments exemplify the importance of high-level expression systems when developing membrane-bound protein purification strategies. This work will aid in the identification of receptor-ligand binding sites, the characterization of molecular features involved in receptor activation, and the elucidation of the CB2 receptor tertiary structure.  相似文献   

12.
We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.  相似文献   

13.
Aims: The aim of this study is to improve exoinulinase production by expression of a cloned exoinulinase gene inuA1 (GenBank accession no. JF961344 ) from Penicillium janthinellum strain B01 in Pichia pastoris. Methods and Results: A full‐length cDNA of exoinulinase gene (inuA1) was cloned from P. janthinellum strain B01 using RACE PCR. An open reading frame (ORF) of 2115 bp is interrupted by a single intron of 67 bp. The fragment encodes a signal peptide with 20 amino acids and a mature protein with 684 amino acids. The inuA1 was subcloned to the pPICZαC expression vector and succesfully over‐expressed in Pichia pastoris X‐33. The highest activity of exoinlinase reached 272·8 U ml?1 in the fermentation liquid. It was c. 11‐fold of that produced by wild‐strain B01. A large amount of fructose was identified after the hydrolysis of inulin with the crude recombinant exoinulinase. The recombinant exoinulinase was purified and characterized. The molecular weight of the purified recombinant exoinulianse was 100 kDa. The mass spectrometry result indicated that the purified protein was indeed recombinant exoinulinase. The optimal pH and temperature of the purified recombinant exoinulianse were 4·5 and 50°C, respectively. Conclusions: An exoinulinase gene of P. janthinellum strain B01 was cloned, sequenced and over‐expressed successfully in P. pastoris. Significance and Impact of the Study: Only a few genes have been cloned from P. janthinellum because its molecular biology is poorly understood. In this study, we cloned and over‐expressed inuA1 gene of P. janthinellum in P. pastoris. This recombinant exoinulinase can be used to hydrolyse inulin to produce fructose and facilitate the biofuel production from inulin resources.  相似文献   

14.
Endostatin, a 20-kDa C-terminal fragment derived from type XVIII collagen, is a potent angiogenesis inhibitor and an antitumor factor. To improve the production of recombinant human endostatin on increasing demand in clinical practice, we constructed an artificial gene encoding its mature peptide sequence in human collagen XVIII. The synthetic gene consisted of 20 codons in preference in methylotropic yeast—Pichia pastoris and was cloned into expression vector pPICZαA; and the recombinant protein was expressed in P. pastoris strain SMD1168 and purified to near homogeneity using heparin affinity chromatography. The amount of expressed recombinant protein in cultural media using described strategy was 80 mg/l in shake flask cultivation and 435 mg/l in high-density bioreactor fermentation. Methylthiazolium assay demonstrated that human endostatin expressed in P. pastoris using artificial synthetic gene of preference in P. pastoris was able to inhibit the acidic fibroblast growth factor-induced proliferation of endothelial cells in vitro.  相似文献   

15.
A system of expression for the foreign actin gene in yeast cells Pichia pastoris has been developed. As a target protein, the Drosophila cytoplasmic actin 5C, which has 90% homology to the β-actin of higher eukaryotes, was used. In the present work, in order to develop conditions for biosynthesis of the target protein in yeast cells and a purification procedure for the recombinant protein, a GFP-actin fusion protein containing green fluorescent protein (GFP) as a fusion tag was expressed and purified. The size and survival of P. pastoris cells producing recombinant protein were characterized and shown to depend on the accumulation of recombinant actin. The purified fusion protein was used to obtain a polyclonal antibody necessary for testing for recombinant actin.  相似文献   

16.
To obtain large quantities of pure human β2-adrenergic receptor (β2-AR) needed for structural studies, an efficient method for β2-AR purification was developed using a recombinant receptor with an eight amino acid epitope at its C-terminus. This epitope is recognized by KT3-monoclonal antibody. The epitope tagged β2-AR was expressed in Sf9 cells with a specific activity of 5–20 pmol/mg of membrane protein. The epitope-tagged and wild-type receptors had identical ligand binding properties. The tagged receptor was solubilized using dodecyl-β-maltoside with a quantitative yield. Solubilized epitope-tagged receptors were partially purified by KT3-mAb immunoaffinity in 60–70% yield. Further purification of the receptors on an alprenolol-affinity column resulted in a homogenous preparation with an overall yield of >30%. The purified receptor was concentrated to >1 mg/ml without loss of ligand binding activity.  相似文献   

17.
The gene for the copper, zinc–superoxide dismutase (SOD) from the yeast Saccharomyces cerevisiae was cloned, characterized, and overexpressed in the methylotrophic Pichia pastoris. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the pPIC9K vector, yielding pAB22. The linearized pAB22 DNA, digested with restriction enzyme SacI, was transformed into the genome of the GS115 strain of yeast P. pastoris. The overexpressed SOD protein was shown to have immunologically biological activity and to be enzymatically active. The SOD protein was purified from the cultured yeast by ammonium sulfate precipitation and diethylaminoethyl–cellulose column chromatography. This relatively simple purification method produced a single band on analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which indicated that the SOD protein obtained attained to higher purity and specific activity.  相似文献   

18.
Abstract

Aim: The main purpose of this work was to develop new protocols for high yield purification of secretory phospholipase A2 (PLA2) and to investigate its biophysical properties.

Materials and methods: We have used a Pichia pastoris expression system for PLA2 expression and two-stage chromatography for its purification. The biophysical properties of PLA2 were investigated by circular dichroism.

Results: A scalable method for high yield purification of recombinant Streptomyces violaceruber PLA2 was developed. The PLA2 from S. violaceruber was expressed in the methylotrophic yeast P. pastoris. Functional active phospholipase A2 with specific activity 73?U/mg was purified with a concentration of at least 3?mg/mL. The role of different divalent ions in PLA2 thermostability were evaluated. Ca2+ and Ba2+ ions significantly increased thermostability of the enzyme.  相似文献   

19.
The gene coding for agglutinin from Galanthus nivalis (GNA) was expressed in, and secreted by, the methylotrophic yeast, Pichia pastoris. Transformants of P. pastoris were selected and a process to produce and purify gram quantities of recombinant GNA was developed. GNA was secreted at approximately 80 mg l–1 at the 200 l scale and was purified to 95% homogeneity using hydrophobic interaction chromatography. The recombinant protein was similar to the protein synthesised in plant with respect to structure and biological activity.  相似文献   

20.
The constitutive expression of human cathelicidin LL-37 antimicrobial peptide was achieved using the methylotrophic yeast, Pichia pastoris. An LL-37 cDNA clone was amplified by PCR using human fetal cDNA library as template. The 111 bp fragment encoding mature LL-37 gene was subcloned into pGAPZ-E, an episomal form of the pGAPZB vector incorporating PARS1. It was then transformed into the P. pastoris X-33 strain for intracellular expression. A small peptide with a molecular mass of about 5 kDa was detected by 17% peptide-PAGE analysis. The recombinant LL-37 peptide was purified from the gel and its amino acid sequence was determined by LC-ESI-MS/MS analysis. The initiating amino acid, methionine, was still attached to the N-terminal region of recombinant LL-37. LL-37 crude extract from P. pastoris showed an antimicrobial activity against Micrococcus luteus as the test strain. The successful expression of human LL-37 indicates that the system may be applicable to the expression of other human defensins without resorting to fusion protein constructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号