首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
It has been shown (Okamoto, K. (1981) J. Gen. Microbiol. in the press) that Dictyostelim discoideum cells dissociated at early aggregation can differentiate into prespore cells in a suspension containing glucose, albumin, EDTA and cyclic AMP. Strict requirement of cyclic AMP in this process has also been demonstrated. In the present paper, changes in activity of eight developmentally regulated enzymes were examined in this culture system and compared to those occuring in the normal course of development on the solid substratum. The results show that (a) formation in this medium is not accompanied by increases in activity of UDPglucose pyrophosphorylase and trehalose phosphate synthetase, unlike the case of the normal development, (b) among the enzymes examined, only UDPgalactose: polysaccharide galactosyl transferase can be regarded as a specific marker of the prespore formation, and (c) development in this system does not proceed beyond the slug stage of the normal development, in the case of a wild-type strain NC4.  相似文献   

2.
Cyclic AMP levels in Ehrlich ascites tumor cells changed little after deprivation of cells of essential nutrients, serum, glucose and amino acids, deprival of each of which leads to marked inhibition of growth and protein synthesis. Cyclic AMP levels also changed little after the addition of these nutrients to deprived cells. Thus cyclic AMP is not likely to be the intracellular mediator for growth regulation by these three nutrients. Elevation of cyclic AMP levels for short periods by exposure of cells to choleratoxin or theophylline produced only slight changes in parameters of protein synthesis (polyribosome pattern and rate of [3H]leucine incorporation). An exposure for 1 day to dibutyryl cyclic AMP did not inhibit cell growth. However, prolonged exposure to dibutyryl cyclic AMP inhibited the multiplication of Ehrlich ascites cells both in suspension and in stationary cultures. No morphological effects were evident in the former; in the latter, cells attached firmly to the substratum and formed elongated cytoplasmic processes. Inhibition of cell multiplication by dibutyryl cyclic AMP was related to cell density and to serum concentration. Cells in dibutyryl cyclic AMP-containing media plated at low cell densities multiplied as rapidly as control cells. The final densities cells reached were determined by the serum concentration; in dibutyryl cyclic AMP-containing media these densities were about one-half those of respective control cells. Limitation of cell multiplication by dibutyryl cyclic AMP was reversed by the addition of serum, by resuspending cells at lower densities, or by resuspending cells in media without dibutyryl cyclic AMP. These findings suggested that dibutyryl cyclic AMP may affect the utilization of serum factors by cells. Dibutyryl cyclic AMP did not inactivate serum factors and did not change the rate at which cells depleted the growth medium of serum factors. Dibutyryl cyclic AMP may limit cell multiplication by increasing the cellular requirement for serum factors.  相似文献   

3.
Abstract Using a shaking culture system, we have previously shown that both cell contact and cAMP are required for pre-spore differentiation in Dictyostelium discoideum [2]. In the present study, cAMP was removed from the medium by the use of a hydrolysing enzyme after cells had formed agglomerates. This treatment left the agglomerates unchanged, but caused a rapid decrease in the activity of UDP galactose transferase, a pre-spore-specific enzyme. This result indicates that cAMP is required even after agglomerate formation to maintain pre-spore differentiation.  相似文献   

4.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

5.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

6.
We have shown previously that amoebae of D. discoideum strain V12 M2 starved at low density in the presence of cyclic AMP fail to form either stalk cells or prespore cells; a low molecular weight factor released by cells at high density promotes stalk formation under these conditions but formation of prespore cells requires 'cell contact'. Here we summarise evidence that:
1. Elevated intracellular cyclic AMP levels are required for all developmental gene expression beyond the preaggregative phase, and ammonia antagonises this expression in some way. However, the action of ammonia is not pathway specific.
2.'Cell contact' is a specific requirement for entry into the prespore pathway of gene expression since isolated cells provided with cyclic AMP synthesise much reduced amounts of the presporespecific enzyme uridine diphosphate (UDP) galactose polysaccharide transferase but normal amounts of the pathway-indifferent enzyme glycogen phosphorylase.
3. The 'cell contact' mechanism is uniquely sensitive to low concentrations of pronase. This protease selectively inhibits transferase synthesis and blocks in vitro spore differentiation (in a spore-forming mutant). It does not prevent chemotactic aggregation, stream formation, or stalk cell formation in the presence of cyclic AMP.  相似文献   

7.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

8.
Abstract. Differentiation of Dictyostelium discoideum cells in submerged monolayers was studied and compared with in vivo development. The accumulation patterns of three developmentally regulated enzymes in cells of strain V12M2 differentiating in vivo on Millipore Filters or in vitro in monolayers at high cell-densities were found to be similar. Moreover, stalk cell formation occurred at approximately the same time in high or low cell density monolayers as it did during normal differentiation. These observations suggest that the timing of differentiation in vitro and in vivo is similar.
In vitro stalk cell formation requires exogenous cyclic AMP, and in its absence, the accumulation patterns of the three developmentally regulated enzymes are alterd. At low cell densities, in vitro stalk cell induction also requires a differentiation-inducing factor (DIF). The addition or removal of cyclic AMP or DIF during development under these conditions revealed the sequence of these two requirements. Cyclic AMP is not required for stalk cell induction for the first 8 hours of incubation, but thereafter, a gradually increasing proportion of cells are induced by cyclic AMP. After a brief delay there is a period of induction by DIF, and this period corresponds approximately to the period of DIF accumulation during in vivo development. The two induction events are clearly separate, in that each inducer can act in the absence of the other, as long as cyclic AMP induction precedes DIF induction. Cyclic AMP is only required at a concentration of 40 μM when added 8 hours after the beginning of the differentiation period.  相似文献   

9.
Stalk cell formation in low-cell-density monolayers of Dictyostelium discoideum, strain V12-M2, occurs following the sequential addition of cyclic AMP and the differentiation-inducing factor (DIF). Both cyclic AMP and DIF are essential for the appearance of the prestalk-specific isozyme alkaline phosphatase-II, which suggests that both factors are necessary for prestalk cell formation. The available evidence suggests that the cyclic AMP requirement for stalk cell formation is mediated through the cell surface cyclic AMP receptor. However, stalk cell formation is inhibited by caffeine and this inhibition is reversed by the cell-permeable analogue 8-Br-cyclic AMP, which suggests in addition a possible involvement for elevated intracellular cyclic AMP concentrations in stalk cell formation. During in vivo development cells first become independent of cyclic AMP at the tipped aggregate stage, but the acquisition of cyclic AMP independence is advanced by several hours when cells are incubated in the presence of cyclic AMP for 2 hours. Cells do not become independent of DIF until the culmination stage of development, which suggests the possibility that DIF is required for the conversion of prestalk cells to stalk cells. There is an absolute requirement for DIF for stalk cell formation in low-density monolayers of prestalk cells but only part of population exhibits a requirement for cyclic AMP, which suggests that the prestalk cell population consists of two distinct cell types. Stalk cell formation from prespore cells is totally dependent on both cyclic AMP and DIF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
It was previously shown [K. Okamoto, J. Gen. Microbiol. 127, 301 (1981)] that Dictyostelium discoideum cells dissociated from early aggregates, but not aggregation competent cells obtained in a suspension culture, undergo prespore differentiation, when transferred into a medium containing glucose, albumin, and cAMP. Therefore, the former, but not the latter, is considered to have been acquired "differentiation competence." In the present work, the requirements for cells to acquire the differentiation competence are investigated with D. discoideum NC4 strain. On solid substratum, the incubation above a threshold density is absolutely required for this process, while cell aggregation itself is not essential. In suspension cultures, the competence is acquired only under hypertonic conditions. Inhibition of protein synthesis or depletion of cAMP does not affect the acquisition process of the competence. The requirement of hypertonic treatment was also investigated with several other D. discoideum strains.  相似文献   

11.
Preservation of cell aggregation is necessary for thyroid follicular differentiation in vitro and requires stimulation by thyrotropin (TSH). We have tested the hypothesis that TSH preferentially increases thyroid cell-cell adhesion relative to cell-substrate adhesion. Cell-cell adhesion was measured in short-term suspension cultures by the decrease in the fraction of single cells remaining in culture (free cell ratio, FCR). When incubated in medium alone freshly isolated cells showed a progressive fall in FCR but this was accelerated by TSH and the cyclic AMP analog, 8-(4-chlorophenylthio)cyclic AMP. Aggregation was dependent upon extracellular Ca2+ and also promoted by a cell-free membrane extract. In contrast, attachment of cells to plastic dishes treated for tissue culture was not affected by TSH. We conclude that thyroid cells possess a TSH-sensitive cell adhesion system. The preferential increase in cell-cell adhesion may be one mechanism by which TSH stimulates the formation and preservation of follicles in vitro.  相似文献   

12.
Summary Tissue-culture methods can be used to test the developmental capacity of embryonic cells. In micro-mass cultures, derived from wing cells of stages 21 through 24 chick embryos, aggregates of cells form and then differentiate into cartilage nodules, as judged by the presence of an Alcian blue staining extracellular matrix. Wing cells derived from embryos as young as stage 17 can form aggregates. However, unless they are treated with db cyclic AMP and theophylline, it is not until stage 20 that these aggregates can produce cartilage in culture. In clonal cell culture, cartilage colonies are not produced by primary cell suspensions of limb cells until stage 25 when overt cartilage differentiation is occurring in vivo. It is possible to obtain clonable cartilage cells from limb cells from embryos between stages 20 and 24 if the cells are either treated with db cyclic AMP and theophylline or maintained in suspension culture for 12 to 48 hr. On the basis of these in vitro results a multiple step model for the conversion of limb mesenchyme into cartilage cells is proposed. The model involves the appearance of cells with a predisposition to form aggregates, development of the capacity to form cartilage in response to elevated levels of cyclic AMP, the appearance of receptors that translate changes in either cell shape or cell cycle parameters into elevated levels of cyclic AMP, aggregation, elevated levels of cyclic AMP, cartilage cell determination, and differentiation. This model can serve as the basis for further tests. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by USPHS Training Grant HD00152 from the National Institute of Child Health and Human Development, while P.B.A. was a postdoctoral trainee, and by NIH Grant HD05505 to M.S.  相似文献   

13.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

14.
When a cell suspension is formed by disruption of a pig lymph node into medium, large and transient increases in intracellular cyclic AMP occur. Similar effects are observed when pig lymphocytes are centrifuged and the cell pellets resuspended, or when the cells are subjected to rapid temperature changes. These observations define the conditions required to manipulate the cells while maintaining a stable cyclic AMP concentration. Under these conditions, neither concanavalin A nor ionophore A23187 at mitogenic concentrations have any early effect on cyclic AMP in pig lymphocytes, but small increases in cyclic AMP (less than 2-fold) were observed at supramitogenic concentrations of concanavalin A (50 microgram/ml) or A23187 (500nM). Mouse thymocytes show qualitatively similar but much smaller changes in cyclic AMP concentration in response to experimental manipulations, and no response to mitogenic or supramitogenic concentrations of concanavalin A below the cytotoxic value.  相似文献   

15.
We have identified limB, a gene encoding a novel LIM domain-containing protein, LIM2, in a screen for genes required for morphogenesis. limB null cells aggregate, although poorly, but they are unable to undergo morphogenesis, and the aggregates arrest at the mound stage. limB null cells exhibit an aberrant actin cytoskeleton and have numerous F-actin-enriched microspikes. The cells exhibit poor adhesion to a substratum and do not form tight cell-cell agglomerates in suspension. Furthermore, limB null cells are unable to properly polarize in chemoattractant gradients and move very poorly. Expression of limB from a prestalk-specific but not a prespore-specific promoter complements the morphogenetic defects of the limB null strain, suggesting that the limB null cell developmental defect results from an inability to properly sort prestalk cells. LIM2 protein is enriched in the cortex of wild-type cells, although it does not colocalize with the actin cytoskeleton. Our analysis indicates that LIM2 is a new regulatory protein that functions to control rearrangements of the actin cytoskeleton and is required for cell motility and chemotaxis. Our findings may be generally applicable to understanding pathways that control cell movement and morphogenesis in all multicellular organisms. Structure function studies on the LIM domains are presented.  相似文献   

16.
Changes in the activity of cyclic AMP phosphodiesterase during differentiation of rabbit bone marrow erythroid cells were investigated. The cells were separated by velocity sedimentation at unit gravity into six fractions corresponding to different stages of development: proerythroblasts, basophilic cells, polychromatic cells, early orthochromatic and late orthochromatic cells and reticulocytes. Cyclic AMP phosphodiesterase was found to be very active in the most immature cells, the proerythroblasts, which also have the highest content of cyclic AMP. After differentiation into basophilic erythroblasts, a 4-fold decrease in cyclic AMP phosphodiesterase activity was observed. In these cells the amount of cyclic AMP was about 80% lower than that in proerythroblasts. In polychromatic cells a further drop in phosphodiesterase activity occurred. After the final cell division the enzyme activity was very low and the levels of cyclic AMP in the early and late orthochromatic cells remained constant. Kinetic studies demonstrated a heterogeneity of erythroid cell cyclic AMP phosphodiesterase: high affinity, low-Km (5.5 X 10(-6) M) and low affinity, high-Km (0.1 X 10(-3) M) enzymes were found. The phosphodiesterase activity was dependent on the presence of Mg2+ and was activated by Ca2+ at low Mg2+ concentrations (1 mM). The changes in cyclic AMP phosphodiesterase activity during differentiation and maturation of erythroid cells suggest the possible importance of this enzyme in the physiological control of cyclic AMP concentrations in developing erythroblasts. The loss of cyclic AMP phosphodiesterase activity after cessation of cell division supports the concept of the significance of the final cell division in erythroblast differentiation.  相似文献   

17.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   

18.
Cyclic nucleotide phosphodiesterase activities of baby hamster kidney cells (BHK) grown in surface cultures were altered by modifying growth conditions. The untransformed BHK cells grown in medium containing 10% fetal calf serum showed non-linear LineweaverBurk plots for cyclic AMP phosphodiesterase activity with apparent Michaelis constants for cyclic AMP of approximately 5 and 30 muM. When these cells were placed in medium containing 1% fetal calf serum, linear kinetic plots for cyclic AMP phosphodiesterase with an apparent Km for cyclic AMP of approximately 20 muM were obtained. Modification of the apparent Km of BHK cell phosphodiesterase was detectable within 20 minutes after dillution of cells grown in 10% serum into fresh medium containing 1% serum. With the BHK cell line transformed with Rous sarcoma virus, differences in enzyme kinetics were not seen when these cells were diluted in 1% or 10% serum. In addition to the serum induced differences in the apparent Km of cyclic AMP phosphodiesterases of BHK cells, total cyclic AMP and cyclic GMP phosphodiesterase activities were also modified by growth conditions. BHK cells grown to high cell densities had three to five-fold higher total cyclic AMP activity than did the cells in less dense cultures. When the dense cell cultures were diluted into fresh medium containing 10% serum, total enzyme activities fell to levels comparable to those found in the rapidly growing cells at low cell densities. The reduction in total enzyme activity after dilution of BHK cells occurred rapidly and was influenced by cell density. A similar reduction of total enzyme activity was also seen in diluted RSV cells; however, the time course of the response differed from that seen in the untransformed cells.  相似文献   

19.
A number of factors that have been shown to influence cell type determination in Dictyostelium discoideum were assessed for their effects on the accumulation of the stalk cell differentiation-inducing factor (DIF) in high-cell-density monolayers of strain V12-M2. DIF accumulation is markedly enhanced by low pH, butyrate, and the proton pump inhibitor diethylstilbestrol (DES), conditions that induce stalk cell formation in low-cell-density monolayers in the absence of added DIF. These results are discussed in relation to a model for cell type determination recently proposed by (J.D. Gross, M.J. Peacey, and R. Pogge Von Strandmann (1988, Differentiation, 38: 91-98). DIF accumulates in high-cell-density monolayers after the cells have become independent of cyclic AMP for stalk cell formation. This accumulation is greatly enhanced by the addition of cyclic AMP. This result may explain why cyclic AMP stimulates stalk cell formation in low-density monolayers in the presence of suboptimal levels of DIF, following preincubation in the presence of saturating levels of cyclic AMP (L. Kwong, A. Sobolewski, and G. Weeks, 1988, Differentiation 37, 1-6). Adenosine has no effect on DIF accumulation in high-cell-density monolayers.  相似文献   

20.
Regulation of transglutaminase activity in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
We have investigated the regulation of transglutaminase activity (epsilon-(gamma-glutamyl)lysine crosslinking enzyme) in Chinese hamster ovary cells in culture. We report that transglutaminase activity increases several-fold in CHO cells at maximum density in suspension culture. This increase cannot be explained by the presence of soluble regulators of the enzyme activity or the appearance of a new enzyme activity with a different affinity for substrate, but appears to be due to an increase in total enzyme activity. Treatment of CHO cells at low cell density with 8-bromo cyclic AMP results in a small increase (20--70%) in transglutaminase activity. By studying CHO mutants which have altered or absent cyclic-AMP-dependent protein kinases, we have demonstrated that the effect of cyclic AMP on transglutaminase activity at low cell density is mediated by cyclic-AMP-dependent protein kinase. However, the protein kinase mutants show normal increases in transglutaminase activity at high cell density, indicating that cyclic AMP-dependent protein kinase does not mediate density-dependent changes in transglutaminase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号