首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola–sugar beet disease process.  相似文献   

3.
4.
We present a new linkage map for sugar beet (Beta vulgaris) which has been developed using a population segregating for genetic factors that confer tolerance to the leaf spot fungus (Cercospora beticola), the causal factor of leaf spot disease in sugar beet). In the F2 population studied, a subset of 36 RFLP probes, mapping on eight out of the nine linkage groups of sugar beet, provided the anchor markers to assign chromosomes. A total of 224 markers, including RFLPs, AFLPs, SCARs and microsatellites, were mapped. Estimates of leaf damage in F2 and test-cross families were repeated at different stages of plant development. Each set of data was analysed as such. An average estimate was also considered. QTLs with highly significant LOD scores revealed both by the F2 and test-cross analyses were localized on linkage groups 2, 6 and 9. Linkage groups 4 and 5 gave a clear indication of the presence of a QTL only when F2 data were considered. One highly significant QTL with a LOD of 16.0 was revealed only by the data obtained under conditions of artificial inoculation. This QTL maps at position 90 on chromosome 3. Received: 3 February 1999 / Accepted: 20 February 1999  相似文献   

5.
6.
大豆作物响应增强UV—B辐射的品种差异   总被引:6,自引:2,他引:6  
田间条件下模拟20%平流层臭氧层衰减,紫外线(UV-B,280-315nm)辐射增强,研究了UV-B对2个大豆(Glycin max (L.)Merr.)品种黑豆和晋豆生长,光合作用和稳定碳同位素组成的影响,结果表明,晋豆比黑豆对UV-B有较强的抗性或不敏感,表现为增强的UV-B辐射显著抑制黑豆的生长和株高,叶、茎、根和总生物量以及株高全部降低,而晋豆仅茎重和株高降低;晋豆的色素含量(叶绿素a,b,类胡萝卜素和类黄酮)不受UV-B辐射影响,在UV-B辐射下黑豆的净光合作用,气孔导度,胞间CO2浓度和蒸腾作用以及不分利用效率明显下降,而晋豆只有气孔导度和蒸腾作用减少,这可能与晋豆本身含有较高的类黄酮及较多的表皮毛和遗传特性有关,用叶片稳定碳同位素组成(δ^13C值)的分析也证明晋豆对UV-B辐射不敏感,由此看来,大豆品种对UV-B辐射的反应差异可以通过δ^13C值来判定。  相似文献   

7.
The vancomycin stress response was studied in Streptococcus pneumoniae strains T4 (TIGR4) and Tupelo. Vancomycin affected the expression of 175 genes, including genes encoding transport functions and enzymes involved in aminosugar metabolism. The two-component systems TCS03, TCS11, and CiaRH also responded to antibiotic treatment. We hypothesize that the three regulons are an important part of the bacterium's response to vancomycin stress.  相似文献   

8.
9.
Cercospora leaf spot caused by Cercospora beticola is a significant threat to the production of sugar and table beet worldwide. A de novo genome assembly of C. beticola was used to develop eight polymorphic and reproducible microsatellite markers for population genetic analyses. These markers were used, along with five previously described microsatellite loci to genotype two C. beticola populations from table beet fields in New York, USA. High allelic and genotypic diversity and low population differentiation were found between fields. Linkage disequilibrium of loci after clone-correction of datasets was attributed to the presence of two distinct clonal lineages within the populations. Linkage equilibrium of loci in one of the clusters supported the presence of sexual reproduction. The draft de novo genome assembly will help elucidate the reproductive system of C. beticola through investigating evidence of recombination in the C. beticola genome.  相似文献   

10.
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

11.
Liu Y  Zhong Z C 《农业工程》2009,29(2):124-129
We measured diurnal changes in photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency in three species of herbaceous climbing plants (Luffa cylindrica, Trichosanthes kirilowii and Dioscorea opposita) exposed to two intensities of UV-B radiation: 3.0 μw cm?2 (R1) and 8.0 μw cm?2 UV-B (R2) radiation under ambient growth conditions. Responses differed per species and per treatment. In Luffa all values increased compared to the Control in both treatments, except for stomatal conductance in R2. In Trichosanthes photosynthetic rates and water use efficiency increased, while the transpiration rates decreased under both treatments, and stomatal conductance was lower in R1. In Dioscorea photosynthetic rates and water use efficiency decreased under both treatments, while the transpiration rates and stomatal conductance increased. The results suggested that to some extent increased UV-B radiation was beneficial to the growth of L. cylindrica and T. kirilowii, but detrimental to D. opposita.  相似文献   

12.
13.
The biological activity of Cercospora beticola toxins might be enhanced by the complex formation with magnesium. Therefore, protonation and complexation equilibria of beticolins were studied. Beticolins carry three dissociable functions (H3B) two of which dissociate at a physiological pH. In the presence of magnesium, the neutralisation and protonation curves provide evidence for the formation of complexes. At physiological pH, the uncharged complex, Mg2H2B2, is the predominant form. The nonionised forms of free beticolin-1 and -2 fluoresce in a 50% dioxan-water solution and their emission maxima shift to higher wavelengths in water. The dianion HB(2-) is non-fluorescent both in water and in less polar media. The formation of the Mg2H2B2 complex which strongly fluoresces in nonpolar media is confirmed by a marked increase in fluorescence at 520 nm and by a shift of the excitation maximum.  相似文献   

14.
Cercospora leaf spot of sugar beet, caused by the fungus Cercospora beticola, is a major foliar pathogen on sugar beet. Fungicide sprays have been used extensively to manage Cercospora leaf spot, including the benzimidazole fungicides. Resistance to benzimidazoles has been observed in isolates of C. beticola. The precise genetics of this resistance is not known in this fungus. We tested benzimidazole‐tolerant and ‐sensitive isolates and found a single mutation in the β‐tubulin gene of benzimidazole‐tolerant isolates that corresponds to a mutation known to confer benzimidazole tolerance in other ascomycetes. This mutation is predicted to cause a change from glutamic acid to alanine in the protein product. Isolates containing this mutation further show an increased sensitivity to an N‐phenylcarbamate, as would be predicted based on the mutant phenotype found in other filamentous fungi. Only a single mutation was found in isolates from different regions of the United States, isolated in different growing seasons.  相似文献   

15.
Silvente S  Sobolev AP  Lara M 《PloS one》2012,7(6):e38554
Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis combined with the physiological studies we assessed the effects of short-term water stress on overall growth, nitrogen fixation, ureide and proline dynamics, as well as metabolic changes in drought tolerant (NA5009RG) and sensitive (DM50048) genotypes of soybean in order to elucidate metabolite adjustments in relation to the physiological responses in the nitrogen-fixing plants towards water limitation. The results of our analysis demonstrated critical differences in physiological responses between these two genotypes, and identified the metabolic pathways that are affected by short-term water limitation in soybean plants. Metabolic changes in response to drought conditions highlighted pools of metabolites that play a role in the adjustment of metabolism and physiology of the soybean varieties to meet drought effects.  相似文献   

16.
17.
Amphibian species capable of optimizing trait response to environmental stressors may develop complex strategies for defending against rapid environmental change. Trait responses may differ between populations, particularly if stressor strength varies across spatial or temporal gradients. Ultraviolet-B (UV-B) radiation is one such stressor that poses a significant threat to amphibian species. We examined the ability of long-toed salamanders (Ambystoma macrodactylum) at high- and low-elevation breeding sites to cooperatively employ behavioral and physiological trait responses to mediate UV-B damage. We performed a microhabitat survey to examine differences in oviposition behavior and UV-B conditions among breeding populations at high- (n = 3; >1,500 m) and low-elevation (n = 3; <100 m) sites. We found significant differences in oviposition behavior across populations, with females at high-elevation sites selecting oviposition substrates in UV-B protected microhabitats. We also collected eggs (n = 633) from each of the breeding sites for analysis of photolyase activity, a photoreactivating enzyme that repairs UV-B damage to the DNA, using a photoproduct immunoassay. Our results revealed no significant differences in photolyase activity between long-toed salamander populations at high and low elevations. For high-elevation salamander populations, relatively low physiological repair capabilities in embryos appear to be buffered by extensive behavioral modifications to reduce UV-B exposure and standardize developmental temperatures. This study provides valuable insight into environmental stress responses via the assessment of multiple traits in allowing sensitive species to persist in rapidly changing landscapes.  相似文献   

18.
The plant pathogenic fungus, Cercospora beticola, causes the most important foliage disease of sugar beet. A previous study has shown that isolates of opposite mating types are present in equal proportions in natural populations; therefore, the aim of this study was to develop highly reproducible polymorphic markers for analysing populations of C. beticola. Five microsatellite and four single nucleotide polymorphism (SNP) markers were developed that allow rapid screening of genetic diversity in C. beticola. Six populations were screened with these markers and all were found to be in gametic equilibrium, indicating random mating in C. beticola.  相似文献   

19.
Calamagrostis arundinacea L. (Roth.) and C. villosa (Chaix.) J.F. Gmel are two grass species substituting forest communities on deforested areas in Central Europe. They were exposed to enhanced ultraviolet-B (UV-B, λ = 290–320 nm) radiation during 22 weeks. A system of modulated lamps operating under field conditions was used to simulate a 25 % increase of incident UV-B radiation. CO2 assimilation seemed to be limited by a decrease of stomatal conductance (g s) in C. arundinacea, whereas carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) was not affected. On the contrary, g s and RuBPCO activity decreased in C. villosa. These physiological adjustments resulted in growth changes; above-ground biomass decreased in C. villosa (prevailing negative effect) and significantly increased in C. arundinacea (prevailing positive effect) in response to enhanced UV-B radiation.  相似文献   

20.
The mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analysed the importance of protein lysine methylation for plants to cope with cadmium. We analysed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs are regulated by cadmium. Also, we showed that 9 out of 23 A. thaliana mutants disrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, and the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号