首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《The Journal of cell biology》1984,99(4):1391-1397
Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments.  相似文献   

2.
《The Journal of cell biology》1990,111(5):1885-1894
Myofiber growth and myofibril assembly at the myotendinous junction (MTJ) of stretch-hypertrophied rabbit skeletal muscle was studied by in situ hybridization, immunofluorescence, and electron microscopy. In situ hybridization identified higher levels of myosin heavy chain (MHC) mRNA at the MTJ of fibers stretched for 4 d. Electron microscopy at the MTJ of these lengthening fibers revealed a large cytoplasmic space devoid of myofibrils, but containing polysomes, sarcoplasmic reticulum and T-membranes, mitochondria, Golgi complexes, and nascent filament assemblies. Tallies from electron micrographs indicate that myofibril assembly in stretched fibers followed a set sequence of events. (a) In stretched fiber ends almost the entire sarcolemmal membrane was electron dense but only a portion had attached myofibrils. Vinculin, detected by immunofluorescence, was greatly increased at the MTJ membrane of stretched muscles. (b) Thin filaments were anchored to the sarcolemma at the electron dense sites. (c) Thick filaments associated with these thin filaments in an unregistered manner. (d) Z-bodies splice into thin filaments and subsequently thin and thick filaments fall into sarcomeric register. Thus, the MTJ is a site of mRNA accumulation which sets up regional protein synthesis and myofibril assembly. Stretched muscles also lengthen by the addition of myotubes at their ends. After 6 d of stretch these myotubes make up the majority of fibers at the muscle ends. Essentially all these myotubes repeat the developmental program of primary myotubes and express slow MHC. MHC mRNA distribution in myotubes is disorganized as is the distribution of their myofibrils.  相似文献   

3.
Native connectin from porcine cardiac muscle   总被引:2,自引:0,他引:2  
Native connectin was isolated from porcine cardiac muscle using the method developed for the preparation of native connectin from chicken breast muscle (Kimura et al. (1984) J. Biochem. 96, 1947-1950). It was not necessary to keep cardiac muscle at 0 degrees C before preparation: the proteolysis of alpha-connectin to beta-connectin proceeded during the preparation of myofibrils. Cardiac connectin showed almost the same properties as those of skeletal muscle connectin: mobility in SDS gel electrophoresis, filamentous structure under an electron microscope, circular dichroism spectra, UV absorption spectra, and amino acid composition. Porcine cardiac connectin cross-reacted with antiserum against chicken breast muscle connectin as revealed by an immunoblot method. Immunoelectron microscopical observations revealed an abundance of connectin antigenic sites around the A-I junction area of cardiac myofibrils. Cardiac connectin also interacted with myosin and actin filaments at low ionic strengths to form aggregates. The extent of interaction was somewhat weaker in the case of cardiac connectin than skeletal muscle connectin, regardless of the origin of myosin and actin (porcine cardiac and rabbit skeletal muscles). In conclusion, cardiac connectin is very similar, but not identical to skeletal muscle connectin.  相似文献   

4.
Myofibrils are linked to the cell membrane at myotendinous junctions located at the ends of muscle fibers, and at costameres, sites positioned periodically along lateral surfaces of muscle cells. Both of these sites are enriched in proteins that link active components of myofibrils to the cell membrane. Costameres are also enriched in desmin intermediate filaments that link passive components of myofibrils to the lateral surfaces of muscle cells. In this study, the possibility that desmin is also found between the terminal Z-disk of myofibrils and the myotendinous junction membrane is examined by immunocytochemistry and by KI-extraction procedures. Data presented show that desmin is located in the filamentous core of cellular processes at myotendinous junctions at sites 30 nm or more from the membrane. This core lies deep to subsarcolemmal material previously shown to contain talin, vinculin, and dystrophin. The distance from desmin to the membrane suggests desmin does not interact directly with membrane proteins at the junction. Immunoblots and indirect immunofluorescence of junctional regions of muscle compared to nonjunctional regions show no apparent enrichment of desmin at junctional sites, although vinculin, another costameric and junctional component, is significantly enriched at junctional regions. These findings show that passive elements of myofibrils may be continuous from myotendinous junctions of muscle origin to insertion via desmin filaments located between terminal Z-disks and the junctional membrane. This can provide a system in parallel to that involving thin filaments, vinculin, and talin for linking myofibrils to the cell membrane at myotendinous junctions.  相似文献   

5.
When rabbit skeletal muscle myofibrils were treated with a solution containing 0.1 mM Ca2+ and 30 micrograms of leupeptin/ml, alpha-connectin, which forms very thin filaments in myofibrils, was split into beta-connectin and a 1,200-kDa subfragment. A part of beta-connectin located near the junction between beta-connectin and the subfragment seems to have an affinity for calcium ions and to be susceptible to the binding of large amounts of calcium ions. The calcium-binding site on beta-connectin is localized near the N2 line in the I band, and the subfragment is localized adjacent to the Z disk. It is possible that connectin filaments change their elasticity during the contraction-relaxation cycle of skeletal muscle at the physiological concentration of calcium ions. Because postmortem skeletal muscles lose their elasticity and become plastic in association with the calcium-specific splitting of connectin filaments, the splitting is considered to be a factor in meat tenderization during postrigor ageing.  相似文献   

6.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

7.
In an earlier study connectin, an elastic protein of striated muscle, was found to be associated with "gap filaments" originating from the thick filaments in the myofibril, but it was not clear whether it extends to Z lines or not (Maruyama, K., H. Sawada, S. Kimura, K. Ohashi, H. Higuchi, and Y. Umazume, 1984, J. Cell Biol., 99:1391-1397). In the present immunoelectron microscopic study using polyclonal antibodies against native connectin, we have concluded that the connectin structures are directly linked to Z lines from the thick (myosin) filaments in myofibrils of skinned fibers of frog skeletal muscle. There were five distinct antibody-binding stripes in each half of the A band and two stripes in the A-I junction region. Deposits of antibodies were recognized in I bands and Z lines. We suggest that connectin filaments run alongside the thick filaments, starting from a region approximately 0.15 micron from the center of the A band.  相似文献   

8.
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a cardiomyopathy and a dystrophy in highly used muscles. We have investigated whether and how neuromuscular and myotendinous junctions are affected and whether nestin compensates for the lack of desmin in the knock-out (K/O) mice. We show that neither neuromuscular nor myotendinous junctions were markedly affected in the desmin K/O mice. In neuromuscular junctions nestin was present between the postjunctional folds and the subneural nuclei and between the nucleus and the myofibrillar cytoskeleton. In myotendinous junctions nestin was present between myofibrils at the Z-disc level and in longitudinal strands close to and at the junction. Nestin expression at these specialized sites, as well as during myogenesis and myofibrillogenesis, is independent of the presence of desmin. In desmin K/O mice nestin was also found in regenerating myofibers. The presence of nestin at neuromuscular and myotendinous junctions might provide enough strength for preservation and organization of the junctional areas, although desmin is lacking.  相似文献   

9.
The presence and distribution of alpha-actinin, an actin-bundling protein, was investigated at sites where frog skeletal muscle forms junctions with tendon collagen fibers. These sites, called myotendinous junctions, are regions where myofibrils terminate and where the force of muscular contraction is transmitted from muscle cells to the substratum. An antibody manufactured to chicken smooth muscle alpha-actinin was used as a probe for alpha-actinin localization in this study. The cross-reactivity of this antibody with frog skeletal muscle alpha-actinin is demonstrated in immunoblots of one-dimensional (1D) electrophoretic separations of muscle proteins. Immunofluorescent localization of anti-alpha-actinin and electron microscopic immunolabelling confirms that the antibody binds to Z-discs with high affinity. However, in sections treated for electron microscopy with affinity-purified anti-alpha-actinin and a ferritin-conjugated, second antibody, there was no significant difference between experimental or control preparations in the number of ferritin grains overlying dense, subsarcolemmal material at junctional or non-junctional regions. Furthermore, Z-discs near myotendinous junctions displayed less binding of anti-alpha-actinin than Z-discs located several micrometers or more from the cells' termini. These findings indicate that thin filaments are not bundled by alpha-actinin near the sarcolemma. The results also provide evidence for molecular heterogeneity between Z-discs at the ends of muscle cells compared with other regions of the cell in that the terminal Z-discs of myofibrils contain very little or no alpha-actinin relative to non-terminal Z-discs.  相似文献   

10.
Very long, elastic connectin/titin molecules position the myosin filaments at the center of a sarcomere by linking them to the Z line. The behavior of the connectin filaments during sarcomere formation in differentiating chicken skeletal muscle cells was observed under a fluorescent microscope using the antibodies to the N terminal (located in the Z line), C terminal (M line), and C zone (myosin filament) regions of connectin and was compared to the incorporation of -actinin and myosin into forming sarcomeres. In early stages of differentiating muscle cells, the N terminal region of connectin was incorporated into a stress fiber-like structure (SFLS) together with -actinin to form dots, whereas the C terminal region was diffusely distributed in the cytoplasm. When both the C and N terminal regions formed striations in young myofibrils, the epitope to the C zone of A-band region, that is the center between the A-I junction and the M-line, initially was diffuse in appearance and later formed definite striations. It appears that it took some time for the N and C terminal regions of connectin to form a regular organization in a sarcomere. Thus the two ends of the connectin filaments were first fixed followed by the specific binding of the middle portion onto the myosin filament during sarcomere formation.  相似文献   

11.
The sarcolemmal domain of rat duodenal smooth muscle cells includes caveolae and associated cytoskeletal or filamentous elements. We have used the quick-freezing, deep-etching method to examine the three dimensional relationships between these components. Replica membranes for separated strips of rat duodenal muscle layers were routinely prepared after extraction soluble proteins from cytoplasm and extracellular matrix. As results, 1) cytoskeletal elements in smooth muscle cells consisted mainly of striated thin filaments; 2) thin filaments were connected with some plasma membranes through filaments associated with the sarcolemma, which formed fine network structures beneath the sarcolemma; 3) many bridging structures between the filaments associated with the sarcolemma and the extracellular matrix were frequently detected in the plasma membrane; and 4) compact filaments associated with the sarcolemma almost disappeared near the caveolae, and only thin filaments were anchored to their neck parts. The special arrangement of the cytoskeletal components, which is probably necessary for the intestinal motility, characterizes the topographical difference of the smooth muscle sarcolemma.  相似文献   

12.
The interaction of the muscle elastic protein connectin with myosin and actin filaments was investigated by turbidimetry, viscosity, flow birefringence measurements, and electron microscopic observations. In KCl concentrations lower than 0.15 M at pH 7.0 at 25 degrees C, both myosin and actin filaments were aggregated by connectin. Myosin filaments were entangled with each other in the presence of connectin. Actin filaments were assembled into bundles under the influence of connectin just as under that of alpha-actinin. The physiological significance of the interactions of connectin with myosin and actin filaments is discussed in relation to the localization of connectin in myofibrils. The Mg2+-activated ATPase activity of actomyosin was appreciably enhanced by connectin in the presence of KCl concentrations lower than 0.1 M. The extent of activation by connectin was smaller than by alpha-actinin. The enhancement of the ATPase activity may be due to acceleration of the onset of superprecipitation of actomyosin.  相似文献   

13.
To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform diameter (6-7 nm) projecting from the M line ran parallel, and extended into the I bands. At the junction line in the I bands, which may correspond to the N2 line in skeletal muscle, individual elastic filaments branched into two or more thinner strands, which repeatedly joined and branched to reach the Z line. Considering that cardiac muscle lacks nebulin, it is very likely that these elastic filaments were composed predominantly of connectin molecules; indeed, anti-connectin monoclonal antibody specifically stained these elastic filaments. Further, striations of approximately 4 nm, characteristic of isolated connectin molecules, were also observed in the elastic filaments. Taking recent analyses of the structure of isolated connectin molecules into consideration, we concluded that individual connectin molecules stretched between the M and Z lines and that each elastic filament consisted of laterally-associated connectin molecules. Close comparison of these images with the replica images of intact and S1-decorated sarcomeres led us to conclude that, in intact sarcomeres, the elastic filaments were laterally associated with myosin and actin filaments in the A and I bands, respectively. Interestingly, it was shown that the elastic property of connectin filaments was not restricted by their lateral association with actin filaments in intact sarcomeres. Finally, we have proposed a new structural model of the cardiac muscle sarcomere that includes connectin filaments.  相似文献   

14.
Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with alpha-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction.  相似文献   

15.
Using polyclonal antibodies against paratropomyosin, which is believed to modify the actin-myosin interaction in postrigor skeletal muscles, we studied the localization of paratropomyosin in chicken breast muscle myofibrils. Intact myofibrils stained with fluorescent antibodies showed that paratropomyosin was exclusively located at the A-I junction region of sarcomeres. In stretched myofibrils (3.7 micron in sarcomere length), the approximate width of the fluorescent stripes and their relation to the A band remained constant. Removal of the A band from myofibrils led to loss of stainability. During postmortem storage of muscles, on the other hand, paratropomyosin was translocated from its original position at the A-I junction region onto thin filaments. The translocation of paratropomyosin was successfully induced with a calcium ion concentration of 10(-4) M in the presence of protease inhibitors. We therefore conclude that in postrigor muscles, paratropomyosin is released from the A-I junction region following the increase in the sarcoplasmic calcium ion concentration to 10(-4) M, and then binds to thin filaments, which results in weakening of rigor linkages formed between actin and myosin.  相似文献   

16.
Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.  相似文献   

17.
Summary The three-dimensional organization of cytoskeletal filaments associated with the myofibrils and sarcolemma of the myocardial cells of early chick embryos was studied by the rapid-freeze deep-etch method combined with immunocytochemistry. In the endoplasmic region of saponin-treated myocardial cells, 12–14 nm filaments formed a loose network surrounding nascent myofibrils. These 12–14 nm filaments attached to the myofibrils and some of them converged into Z disc regions. In the non-junctional cytocortical region thinner 8–11 nm filaments composed a dense network just beneath the sarcolemma. In myofibril terminating regions at the sarcolemma, i.e., the fascia adherens, 3–5 nm cross-bridges were observed among the thin filaments. In Triton-permeabilized and myosin subfragment 1 (S1)-treated samples, subsarcolemmal 8–11 nm filaments proved to be S1-decorated actin filaments under which there was a loose network of S1-undecorated filaments. Subsarcolemmal S1-decorated actin filaments had mixed polarity and attached to the sarcolemma at one end. A loose network of S1-undecorated filaments among myofibrils in the endoplasmic region was revealed to consist of desmin-containing intermediate filaments after immuno-gold staining for desmin. These networks connecting myofibrils with sarcolemma were assumed to play an important role in integrating and transmitting the contractile force of individual myofibrils within early embryonic myocardial cells.  相似文献   

18.
The accessory muscle of the walking leg of the horseshoe crab, Tachypleus gigas, was examined electron microscopically. The muscle fibers vary in size but are small in diameter, when compared with other arthropod skeletal muscles. They are striated with A, I, Z and poorly defined H bands. The sarcomere length ranges from 3-10 μm with most sarcomeres in the range of about 6 μm. The myofilaments are arranged in lamellae in larger fibers and less well organized in the smaller ones. Each thick filament is surrounded by 9-12 thin filaments which overlap. The SR is sparse but well organized to form a fenestrated collar around the fibrils. Individual SR tubules are also seen among the myofibrils. Long transverse tubules extend inward from the sarcolemma to form dyads or triads with the SR at the A-I junction. Both dyads and triads coexist in a single muscle fiber, a feature believed to have evolutionary significance. The neuromuscular relationship is unique. In the region of synaptic contact, the sarcolemma is usually elevated to form a large club-shaped structure containing no myofilaments and few other organelles. The axons or axon terminals and glial elements penetrate deep into the club-shaped sarcoplasm and form synapses with the fiber. As many as 13 terminals have been observed within a single section. Synaptic vesicles of two types are found in the axon terminals.  相似文献   

19.
Ultrastructure of muscle cells in Siboglinum fiordicum (Pogonophora)   总被引:1,自引:0,他引:1  
Two different muscle types are found in the body of Siboglinum fiordicum: body wall muscle and blood vessel muscle. Both are of a myomesothelial type. The myofibrils of the body wall muscle are non-striated and consist of thick and thin myofilaments. Scattered dense bodies and attachment plaques are described. The sarcoplasmic reticulum forms a three-dimensional network in the myofibrils and only peripheral couplings are observed. The thick filaments are of a paramyosin type and have a diameter ranging from 400-1500 A. The blood vessels muscle is non-striated, but sometimes a sarcomere-like organization has been observed. Both thick and thin filaments are present. The thick filaments have a diameter of 250-400 A and lack transverse striations. Dense bodies and attachment of plaques are few. The sparse sarcoplasmic reticulum is restricted to the myofibril periphery where it makes peripheral couplings with sarcolemma. The luminal surface of the vessels is lined by a basal lamina with collagen-like inclusions. No endothelium is found. The body wall muscle and the blood vessel muscle are compared with other muscle types described in invertebrates.  相似文献   

20.
A confocal laser microscope was used to analyze the localization pattern of dystrophin along the sarcolemma in guinea pig skeletal muscle fibers. Hind leg muscles of the normal animals were freshly dissected and frozen for cryostat sections, which were then stained with a monoclonal antidystrophin antibody. In confocal laser microscopy, immunofluorescence staining in relatively thick sections could be sharply imaged in thin optical sections. When longitudinal and transverse sections of muscle fibers were examined, the immunostaining of dystrophin was seen as linearly aligned fluorescent dots or intermittent lines along the sarcolemma. In longitudinally cut muscle fibers, many fluorescent dots, but not all, corresponded to the sarcomere pattern, especially the I band. Sections cut tangential to the sarcolemma also showed a lattice-like pattern of longitudinal and transverse striations of fluorescent dots. Double staining for dystrophin and vinculin showed that the two proteins were not exactly colocalized. The end portions of muscle fibers were much more intensely stained with antidystrophin antibody than the central portions, following the contour of elaborate surface specializations at the myo-tendon junction. The staining pattern at the myo-tendon junction was also discontinuous. These confocal microscopic observations suggest that dystrophin may be localized in a nonuniform, discontinuous pattern along the sarcolemma and in some relationship with the underlying myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号