首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamically stabilized pores in bilayer membranes.   总被引:3,自引:0,他引:3       下载免费PDF全文
Zhelev and Needham have recently created large, quasistable pores in artificial lipid bilayer vesicles. Initially created by electroporation, the pores remain open for up to several seconds before quickly snapping shut. This result is surprising, in light of the large line tension for holes in bilayer membranes and the rapid time scale for closure of large pores. We show how pores can be dynamically stabilized via a new feedback mechanism. We also explain quantitatively the observed sudden pore closure as a tangent bifurcation. Finally, we show how Zhelev and Needham's experiment can be used to measure accurately the pore line tension, an important material parameter. For their stearoyloleoylphosphatidylcholine/cholesterol mixture we obtain a line tension of 2.6 x 10(-6) dyn.  相似文献   

2.
We establish a biophysical model for the dynamics of lipid vesicles exposed to surfactants. The solubilization of the lipid membrane due to the insertion of surfactant molecules induces a reduction of membrane surface area at almost constant vesicle volume. This results in a rate-dependent increase of membrane tension and leads to the opening of a micron-sized pore. We show that solubilization kinetics due to surfactants can determine the regime of pore dynamics: either the pores open and reseal within a second (short-lived pore), or the pore stays open up to a few minutes (long-lived pore). First, we validate our model with previously published experimental measurements of pore dynamics. Then, we investigate how the solubilization kinetics and membrane properties affect the dynamics of the pore and construct a phase diagram for short and long-lived pores. Finally, we examine the dynamics of sequential pore openings and show that cyclic short-lived pores occur with a period inversely proportional to the solubilization rate. By deriving a theoretical expression for the cycle period, we provide an analytical tool to estimate the solubilization rate of lipid vesicles by surfactants. Our findings shed light on some fundamental biophysical mechanisms that allow simple cell-like structures to sustain their integrity against environmental stresses, and have the potential to aid the design of vesicle-based drug delivery systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.  相似文献   

3.
An externally applied electric field across vesicles leads to transient perforation of the membrane. The distribution and lifetime of these pores was examined using 1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid vesicles using a standard fluorescent microscope. The vesicle membrane was stained with a fluorescent membrane dye, and upon field application, a single membrane pore as large as approximately 7 microm in diameter was observed at the vesicle membrane facing the negative electrode. At the anode-facing hemisphere, large and visible pores are seldom found, but formation of many small pores is implicated by the data. Analysis of pre- and post-field fluorescent vesicle images, as well as images from negatively stained electron micrographs, indicate that pore formation is associated with a partial loss of the phospholipid bilayer from the vesicle membrane. Up to approximately 14% of the membrane surface could be lost due to pore formation. Interestingly, despite a clear difference in the size distribution of the pores observed, the effective porous areas at both hemispheres was approximately equal. Ca(2+) influx measurements into perforated vesicles further showed that pores are essentially resealed within approximately 165 ms after the pulse. The pore distribution found in this study is in line with an earlier hypothesis (E. Tekle, R. D. Astumian, and P. B. Chock, 1994, Proc. Natl. Acad. Sci. U.S.A. 91:11512--11516) of asymmetric pore distribution based on selective transport of various fluorescent markers across electroporated membranes.  相似文献   

4.
We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.  相似文献   

5.
Formation of pore-like structures in cell membranes could participate in exchange of matter between cell compartments and modify the lipid distribution between the leaflets of a bilayer. We present experiments on two model systems in which major lipid redistribution is attributed to few submicroscopic transient pores. The first kind of experiments consists in destabilizing the membrane of a giant unilamellar vesicle by inserting conic-shaped fluorescent lipids from the outer medium. The inserted lipids (10% of the vesicle lipids) should lead to membrane rupture if segregated on the outer leaflet. We show that a 5-nm diameter pore is sufficient to ease the stress on the membrane by redistributing the lipids. The second kind of experiments consists in forcing giant vesicles containing functionalized lipids to adhere. This adhesion leads to hemifusion (merging of the outer leaflets). In certain cases, the formation of pores in one of the vesicles is attested by contrast loss on this vesicle and redistribution of fluorescent labels between the leaflets. The kinetics of these phenomena is compatible with transient submicroscopic pores and long-lived membrane defects.  相似文献   

6.
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA–PC liposomes–Mg2+, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) <100 nm in diameter, a “big” liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The “big” membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.  相似文献   

7.
《Biophysical journal》2022,121(17):3295-3302
Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.  相似文献   

8.
The creation of a small opening called the fusion pore is a necessary prerequisite for neurotransmitter release from synaptic vesicles. It is known that high intensity electric fields can create pores in vesicles by a process called electroporation. Due to the presence of charged phosphatidylserine (PS) molecules on the inner leaflet of the cell membrane, an electric field that is strong enough to cause electroporation of a synaptic vesicle might be present. It was shown by K. Rosenheck [K. Rosenheck. Biophys J 75, 1237-1243 (1998)] that in a planar geometry, fields sufficient to cause electroporation can occur at intermembrane separations of less than approximately 3 nm. It is frequently found, however, that the cell membrane is not planar but caves inward at the locations where a vesicle is close to it. Indentation of the cell membrane in the fusion region was modelled as a hemisphere and a theoretical study of the electric field in the vicinity of the cell membrane taking into account the screening effect of dissolved ions in the cytoplasm was performed. It was discovered that fields crossing the electroporation threshold occurred at a distance of 2 nm or less, supporting the claim that electroporation could be a possible mechanism for fusion pore formation.  相似文献   

9.
Exocytosis of secretory vesicles begins with a fusion pore connecting the vesicle lumen to the extracellular space. This pore may then expand or it may close to recapture the vesicle intact. The contribution of the latter, termed kiss-and-run, to exocytosis of pancreatic beta cell large dense-core vesicles (LDCVs) is controversial. Examination of single vesicle fusion pores demonstrated that rat beta cell LDCVs can undergo exocytosis by rapid pore expansion, by the formation of stable pores, or via small transient kiss-and-run fusion pores. Elevation of cAMP shifted LDCV fusion pore openings to the transient mode. Under this condition, the small fusion pores were sufficient for release of ATP, stored within LDCVs together with insulin. Individual ATP release events occurred coincident with amperometric "stand alone feet" representing kiss-and-run. Therefore, the LDCV kiss-and-run fusion pores allow small transmitter release but likely retain the larger insulin peptide. This may represent a mechanism for selective intraislet signaling.  相似文献   

10.
Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.  相似文献   

11.
Abstract

The creation of a small opening called the fusion pore is a necessary prerequisite for neurotransmitter release from synaptic vesicles. It is known that high intensity electric fields can create pores in vesicles by a process called electroporation. Due to the presence of charged phosphatidylserine (PS) molecules on the inner leaflet of the cell membrane, an electric field that is strong enough to cause electroporation of a synaptic vesicle might be present. It was shown by K. Rosenheck [K. Rosenheck. Biophys J 75, 1237–1243 (1998)] that in a planar geometry, fields sufficient to cause electroporation can occur at intermembrane separations of less than ~3 nm. It is frequently found, however, that the cell membrane is not planar but caves inward at the locations where a vesicle is close to it. Indentation of the cell membrane in the fusion region was modelled as a hemisphere and a theoretical study of the electric field in the vicinity of the cell membrane taking into account the screening effect of dissolved ions in the cytoplasm was performed. It was discovered that fields crossing the electroporation threshold occurred at a distance of 2 nm or less, supporting the claim that electroporation could be a possible mechanism for fusion pore formation.  相似文献   

12.
Release of adrenaline by chromaffin cells occurs through a process involving docking and then fusion of a secretory vesicle to the cytoplasmic membrane of the cell. Fusion proceeds in two main stages. The first one leads to the creation of a stable fusion pore passing through the two membranes and which gives a constant release flux of neurotransmitter (pore-release stage). After a few milliseconds, this initial stage which is not investigated here proceeds through a sudden enlargement of the initial pore (full-fusion stage) up to the complete incorporation of the vesicle membrane into that of the cell and total exposure of the initial matrix vesicle core to the extracellular fluid. The precise time-resolved dynamics of the release and of the vesicle membrane during the full-fusion phase can be extracted with a precision never achieved so far by de-convolution of experimental chronoamperometric currents monitored during individual exocytotic secretion events. The peculiar dynamics of the vesicle membrane proves that exocytotic events are powered by the swelling of the matrix polyelectrolyte core of the vesicle, although they are kinetically regulated by diffusion in the matrix and by the dynamics of the vesicle and cell membranes. Two simple theoretical models based on the dynamics of pores are developed to account for these dynamics and are shown to predict behaviors which are essentially identical to the experimental ones. This offers a new view of the kinetic grounds which control the full-fusion stage, and therefore provides a new interpretation of the sudden transition between the pore-release and the full-fusion stages. This transition occurs when the increasing membrane surface tension energy due to the refrained internal swelling pressure overcomes the edge energy of the pore, so that the initial fusion pore becomes unstable and is disrupted. This new view predicts that secretory vesicles which contain matrixes energetically similar to those of the adrenal cells investigated here can be separated into two classes according to their radius and catecholamine content. Small vesicles (less than ca. 25 nm radius, and containing less than ca. 20000 molecules) should always release through pores. Larger vesicles should always end into fusing except if another mechanism closes the pore before ca. 10000 molecules of catecholamines have been released.  相似文献   

13.
The effects of the polyene pore-forming agent nystatin were investigated on individual giant unilamellar phospholipid vesicles (GUVs), made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in different methanol-water solutions using phase-contrast optical microscopy. Three characteristic effects were detected in three different nystatin concentration ranges: vesicle shape changes (between 150 and 250μM); transient, nonspecific, tension pores (between 250 and 400μM); and vesicle ruptures (above 400μM). Both the appearance of the transient tension pores and the vesicle ruptures were explained as being a consequence of the formation of size-selective nystatin channels, whose membrane area density increases with the increasing nystatin concentrations. Our results also show that nystatin is able to form pores in the absence of sterols. In addition, study of the cross-interactions between nystatin and methanol revealed mutually antagonizing effects on the vesicle behavior for methanol volume fractions higher than 10%.  相似文献   

14.
Although endocytosis involves the fission pore, a transient structure that produces the scission between vesicle and plasma membranes, the dimensions and dynamics of fission pores remain unclear. Here we report that the pore resistance changes proceed in three distinct phases: an initial phase where the resistance increases at 31.7 ± 2.9 GΩ/second, a slower linear phase with an overall slope of 11.7 ± 1.9 GΩ/second and a final increase in resistance more steeply (1189 ± 136 GΩ/second). The kinetics of these changes was calcium dependent. These sequential stages of the fission pore may be interpreted in terms of pore geometry as changes, first in pore diameter and then in pore length, according to which, before fission, the pore diameter consistently decreased to a value near 4 nm, whereas the pore length ranged between 20 and 300 nm. Dynamin, a mechanochemical GTPase, plays an important role in accelerating the fission event, preferentially in endocytotic vesicles of regular size, by increasing the rates of pore closure during the first and second phases of the fission pore, but hardly affected larger and longer‐lived endocytotic events. These results suggest that fission pores are dynamic structures that form thin and long membrane necks regulated by intracellular calcium. Between calcium mediators, dynamin functions as a catalyst to increase the speed of single vesicle endocytosis.  相似文献   

15.
The release of vesicle contents following exocytotic fusion is limited by various factors including the size of the fusion pore. Fusion pores are channel-like, narrow structures after formation and proceed through semi-stable states ('fusion pore flickering'), unless they fully expand (full fusion) or close again (transient fusion). Partial release of vesicle contents may occur during transient fusion, which was described to last between milliseconds and seconds, depending on the size of the vesicle. We studied fusion pores in a slow-secreting lung epithelial cell (type II cell) using fluorescence staining of vesicle contents (surfactant) and fluorescence recovery after photobleaching (FRAP). Surfactant is a lipidic material, which is secreted into the alveolar lumen to reduce the surface tension in the lung. We found release of surfactant to be a slow process, which can last for hours. Accordingly, fusion pores in these cells are stable structures, which appear to be a barrier for release. FRAP measurements suggest that transient fusions occasionally take place in these long-lasting fusion pores, resulting in partial release of surfactant into the extracellular space. These data suggest that postfusion mechanisms may regulate the amount of secreted surfactant.  相似文献   

16.
Dynamics of fusion pores connecting membranes of different tensions   总被引:1,自引:0,他引:1       下载免费PDF全文
The energetics underlying the expansion of fusion pores connecting biological or lipid bilayer membranes is elucidated. The energetics necessary to deform membranes as the pore enlarges, in some combination with the action of the fusion proteins, must determine pore growth. The dynamics of pore growth is considered for the case of two homogeneous fusing membranes under different tensions. It is rigorously shown that pore growth can be quantitatively described by treating the pore as a quasiparticle that moves in a medium with a viscosity determined by that of the membranes. Motion is subject to tension, bending, and viscous forces. Pore dynamics and lipid flow through the pore were calculated using Lagrange's equations, with dissipation caused by intra- and intermonolayer friction. These calculations show that the energy barrier that restrains pore enlargement depends only on the sum of the tensions; a difference in tension between the fusing membranes is irrelevant. In contrast, lipid flux through the fusion pore depends on the tension difference but is independent of the sum. Thus pore growth is not affected by tension-driven lipid flux from one membrane to the other. The calculations of the present study explain how increases in tension through osmotic swelling of vesicles cause enlargement of pores between the vesicles and planar bilayer membranes. In a similar fashion, swelling of secretory granules after fusion in biological systems could promote pore enlargement during exocytosis. The calculations also show that pore expansion can be caused by pore lengthening; lengthening may be facilitated by fusion proteins.  相似文献   

17.
The influences of ergosterol and cholesterol on the activity of the nystatin were investigated experimentally in a POPC model membrane as well as theoretically. The behavior of giant unilamellar vesicles (GUVs) under osmotic stress due to the formation of transmembrane pores was observed on single vesicles at different nystatin concentrations using phase-contrast microscopy. A significant shift of the typical vesicle behavior, i.e., morphological alterations, membrane bursts, slow vesicle ruptures and explosions, towards lower nystatin concentrations was detected in the ergosterol-containing vesicles and a slight shift towards higher nystatin concentrations was detected in the cholesterol-containing membranes. In addition, the nystatin activity was shown to be significantly affected by the ergosterol membrane’s molar fraction in a non-proportional manner. The observed tension-pore behavior was interpreted using a theoretical model based on the osmotic phenomena induced by the occurrence of size-selective nystatin pores. The number of nystatin pores for different vesicle behavior was theoretically determined and the role of the different mechanical characteristics of the membrane, i.e., the membrane's expansivity and bending moduli, the line tension and the lysis tension, in the tension-pore formation process was quantified. The sterol-induced changes could not be explained adequately on the basis of the different mechanical characteristics, and were therefore interpreted mainly by the direct influences of the membrane sterols on the membrane binding, the partition and the pore-formation process of nystatin.  相似文献   

18.
When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores.  相似文献   

19.
Single giant unilamellar vesicles (GUVs) rupture spontaneously from their salt-laden suspension onto solid surfaces. At hydrophobic surfaces, the GUVs rupture via a recurrent, bouncing ball rhythm. During each contact, the GUVs, rendered tense by the substrate interactions, porate, and spread a molecularly transformed motif of a monomolecular layer on the hydrophobic surface from the point of contact in a symmetric manner. The competition from pore closure, however, limits the spreading and produces a daughter vesicle, which re-engages with the substrate. At solid hydrophilic surfaces, by contrast, GUVs rupture via a distinctly different recurrent burst-heal dynamics; during burst, single pores nucleate at the contact boundary of the adhering vesicles, facilitating asymmetric spreading and producing a “heart”-shaped membrane patch. During the healing phase, the competing pore closure produces a daughter vesicle. In both cases, the pattern of burst-reseal events repeats multiple times, splashing and spreading the vesicular fragments as bilayer patches at the solid surface in a pulsatory manner. These remarkable recurrent dynamics arise, not because of the elastic properties of the solid surface, but because the competition between membrane spreading and pore healing, prompted by the surface-energy-dependent adhesion, determine the course of the topological transition.  相似文献   

20.
During exocytosis, secretory vesicles of mast cells generate a current transient that marks the opening of the fusion pore, the first aqueous connection that forms between the vesicle lumen and the cell exterior. By recording and analyzing such current transients, we have tracked the conductance of the fusion pore over the first millisecond of its existence. The first opening of the pore occurs rapidly, generally within 100 microseconds at 23 degrees C. The electric conductance of the pore is a few hundred picosiemens at first, but gradually increases over the subsequent milliseconds. Evidently the pore opens abruptly and then dilates. The initial conductance of the pore suggests a diameter comparable to that of a large ion channel. From an analysis of "capacitance flicker" we infer that a pore can increase its diameter severalfold and still close again completely. This suggests that several early events in membrane fusion are reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号