首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Glucose-6-phosphatase (G6Pase) is a key enzyme that is responsible for the production of glucose in the liver during fasting or in type 2 diabetes mellitus (T2DM). During fasting or in T2DM, peroxisome proliferator-activated receptor α (PPARα) is activated, which may contribute to increased hepatic glucose output. However, the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in these states is not well understood. We evaluated the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in fasting and T2DM states. In PPARα-null mice, both hepatic G6Pase and phosphoenolpyruvate carboxykinase levels were not increased in the fasting state. Moreover, treatment of primary cultured hepatocytes with Wy14,643 or fenofibrate increased the G6Pase mRNA level. In addition, we have localized and characterized a PPAR-responsive element in the promoter region of the G6Pase gene. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα binding to the putative PPAR-responsive element of the G6Pase promoter was increased in fasted wild-type mice and db/db mice. These results indicate that PPARα is responsible for glucose production through the up-regulation of hepatic G6Pase gene expression during fasting or T2DM animal models.  相似文献   

7.
8.
9.
10.
Glycogen storage disease type 1a (GSD-1a), characterized by hypoglycemia, liver and kidney enlargement, growth retardation, hyperlipidemia, and hyperuricemia, is caused by a deficiency in glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis. To evaluate the feasibility of gene replacement therapy for GSD-1a, we have infused adenoviral vector containing the murine G6Pase gene (Ad-mG6Pase) into G6Pase-deficient (G6Pase(-/-)) mice that manifest symptoms characteristic of human GSD-1a. Whereas <15% of G6Pase(-/-) mice under glucose therapy survived weaning, a 100% survival rate was achieved when G6Pase(-/-) mice were infused with Ad-mG6Pase, 90% of which lived to 3 months of age. Hepatic G6Pase activity in Ad-mG6Pase-infused mice was restored to 19% of that in G6Pase(+/+) mice at 7-14 days post-infusion; the activity persisted for at least 70 days. Ad-mG6Pase infusion also greatly improved growth of G6Pase(-/-) mice and normalized plasma glucose, cholesterol, triglyceride, and uric acid profiles. Furthermore, liver and kidney enlargement was less pronounced with near-normal levels of glycogen depositions in both organs. Our data demonstrate that a single administration of a recombinant adenoviral vector can alleviate the pathological manifestations of GSD-1a in mice, suggesting that this disorder in humans can potentially be corrected by gene therapy.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Type 1 diabetes results from the autoimmune destruction of pancreatic β-cells, which leads to severe insulin deficiency. Insulin gene therapy provides an attractive approach to cure diabetes. The critical factor for insulin gene therapy in surrogate cells is to select an appropriate site for insulin expression and a tissue-specific promoter that is responsive to both physiological glucose and insulin concentrations. A novel chimeric promoter, (GIRE)n-G6Pase, consisting of a 1.6 kb glucose 6-phosphatase (G6Pase) promoter and a segment of the regulatory element derived from the L-type pyruvate kinase (L-PK) promoter, was designed to provide strong and tight control of insulin expression in liver. One or three copies of GIRE were linked to the G6Pase promoter, which showed a stronger promoter activity than the G6Pase promoter alone. The chimeric promoter was inhibited by insulin in a dosage-dependent manner and activated by glucose, two features essential for glucose metabolism. The promoter activity is conserved between species and highly specific for liver cells. The construction of a chimeric promoter with stronger and more sensitive responsive activity to glucose and insulin in liver cells could further advance studies in insulin gene therapy. Mr. James Chong was a senior student in the Department of Cell and Molecular Biology, Tulane University. His independent study project was partially overlapped with this study.  相似文献   

18.
Sodium arsenite has been demonstrated to alter the expression of genes associated with glucose homeostasis in tissues involved in the pathogenesis of type 2 diabetes; however, the underlying molecular mechanism has not been fully elucidated yet. In this study, we report that the sodium arsenite-induced gene expression of the small heterodimer partner (SHP; NR0B2), an atypical orphan nuclear receptor, regulates the expression of hepatic gluconeogenic genes. Sodium arsenite augments hepatic SHP mRNA levels in an AMP-activated protein kinase (AMPK)-dependent manner. Sodium arsenite activated AMPK and was shown to perturb cellular ATP levels. The arsenite-induced SHP mRNA level was blocked by adenoviral overexpression of dominant negative AMPK (Ad-dnAMPKalpha) or by the AMPK inhibitor compound C in hepatic cell lines. We demonstrated the dose-dependent induction of SHP mRNA levels by sodium arsenite and repressed the forskolin/dexamethasone-induced gene expression of the key hepatic gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Ad-dnAMPKalpha blocked the repressive effects of arsenite-induced SHP on PEPCK and G6Pase. Sodium arsenite inhibited the promoter activity of PEPCK and G6Pase, and this repression was abolished by small interfering (si)RNA SHP treatments. The knockdown of SHP expression by oligonucleotide siRNA SHP or adenoviral siRNA SHP released the sodium arsenite-mediated repression of forskolin/dexamethasone-stimulated PEPCK and G6Pase gene expression in a variety of hepatic cell lines. Results from our study suggest that sodium arsenite induces SHP via AMPK to inhibit the expression of hepatic gluconeogenic genes and also provide us with a novel molecular mechanism of arsenite-mediated regulation of hepatic glucose homeostasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号