首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The physical properties of membranes derived from the total lipid extract of porcine lenses before and after the addition of cholesterol were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves indicate that the spin labels detect a single homogenous environment in membranes before the addition of cholesterol. After the addition of cholesterol (when cholesterol-to-phospholipid mole to mole ratio of 1.55-1.80 was achieved), two domains were detected by the discrimination by oxygen transport method using a cholesterol analogue spin label. The domains were assigned to a bulk phospholipid-cholesterol bilayer made of the total lipid mixture and to a cholesterol crystalline domain. Because the phospholipid analogue spin labels cannot partition into the pure cholesterol crystalline domain, they monitor properties of the phospholipid-cholesterol domain outside the pure cholesterol crystalline domain. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are identical within experimental error in this domain when measured in the absence and presence of a cholesterol crystalline domain. This indicates that both domains, the phospholipid-cholesterol bilayer and the pure cholesterol crystalline domain, can be treated as independent, weakly interacting membrane regions. The upper limit of the oxygen permeability coefficient across the cholesterol crystalline domain at 35 °C had a calculated value of 42.5 cm/s, indicating that the cholesterol crystalline domain can significantly reduce oxygen transport to the lens center. This work was undertaken to better elucidate the major factors that determine membrane resistance to oxygen transport across the lens lipid membrane, with special attention paid to the cholesterol crystalline domain.  相似文献   

2.
The mechanosensitive channel of large conductance (MscL) from E. coli serves as an emergency release valve allowing the cell to survive acute osmotic downshock. It is one of the best studied mechanosensitive channels and serves as a paradigm for how a protein can sense and respond to membrane tension. Two MscL crystal structures of the orthologs M. tuberculosis and S. aureus have been solved showing pentameric and tetrameric structures, respectively. Several studies followed to understand whether the discrepancy in their stoichiometry was a species difference or a consequence of the protein manipulation for crystallization. Two independent studies now agree that the full-length S. aureus MscL is actually a pentamer, not tetramer. While detergents appear to play a role in modifying the oligomeric state of the protein, a cytoplasmic helical bundle has also been implicated. Here, we evaluate the role of the C-terminal region of S. aureus MscL in the oligomerization of the channel in native membranes by using an in vivo disulfide-trapping technique. We find that the oligomeric state of S. aureus MscLs with different C-terminal truncations, including the one used to obtain the tetrameric S. aureus MscL crystal structure, are pentamers in vivo. Thus, the C-terminal domain of the S. aureus protein only plays a critical role in the oligomeric state of the SaMscL protein when it is solubilized in detergent.  相似文献   

3.
The mechanosensitive channel of small conductance (MscS) is part of a coordinated response to osmotic challenges in Escherichia coli. MscS opens as a result of membrane tension changes, thereby releasing small solutes and effectively acting as an osmotic safety valve. Both the functional state depicted by its crystal structure and its gating mechanism remain unclear. Here, we combine site-directed spin labeling, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations with novel energy restraints based on experimental electron paramagnetic resonance data to investigate the native transmembrane (TM) and periplasmic molecular architecture of closed MscS in a lipid bilayer. In the closed conformation, MscS shows a more compact TM domain than in the crystal structure, characterized by a realignment of the TM segments towards the normal of the membrane. The previously unresolved NH2-terminus forms a short helical hairpin capping the extracellular ends of TM1 and TM2 and is in close interaction with the bilayer interface. The present three-dimensional model of membrane-embedded MscS in the closed state represents a key step in determining the molecular mechanism of MscS gating.  相似文献   

4.
Residual dipolar couplings in the denatured state of bovine acyl-coenzyme A binding protein (ACBP) oriented in strained polyacrylamide gels have been shown to be a sensitive, sequence-specific probe for residual secondary structure. Results supporting this were obtained by comparing residual dipolar couplings under different denaturing conditions. The data were analyzed using the program molecular fragment replacement (MFR), which demonstrated alpha-helix propensity in four isolated stretches along the protein backbone, and these coincide with the location of native helices. This is in full agreement with earlier findings based on secondary chemical shift values. Furthermore, N-H residual dipolar couplings provided direct evidence for the existence of native-like hydrophobic interactions in the acid-denatured state of ACBP at pH 2.3. It was shown that replacement of the hydrophobic side-chain of residue Ile27 with alanine in helix A2 leads to large decreases of residual dipolar couplings in residues that form helix A4 in the native state. It is suggested that the Ile to Ala mutation changes the probability for the formation of long-range interactions, which are present in the acid-denatured state of the wild-type protein. These long-range interactions are similar to those proposed to form in the transition state of folding of ACBP. Therefore, the application of residual dipolar couplings in combination with a comparative mutation study has demonstrated the presence of precursors to the folding transition state under acid-unfolding conditions.  相似文献   

5.
Higher plants sense and respond to osmotic and mechanical stresses such as turgor, touch, flexure and gravity. Mechanosensitive (MS) channels, directly activated by tension in the cell membrane and cytoskeleton, are supposed to be involved in the cell volume regulation under hypotonic conditions and the sensing of these mechanical stresses based on electrophysiological and pharmacological studies. However, limited progress has been achieved in the molecular identification of plant MS channels. Here, we show that MCA1 (mid1-complementing activity 1; a putative mechanosensitive Ca2+-permeable channel in Arabidopsis thaliana) increased MS channel activity in the plasma membrane of Xenopus laevis oocytes. The functional and kinetic properties of MCA1 were examined by using a Xenopus laevis oocytes expression system, which showed that MCA1-dependent MS cation currents were activated by hypo-osmotic shock or by membrane stretch produced by pipette suction. Single-channel analyses suggest that MCA1 encodes a possible MS channel with a conductance of 34 pS.  相似文献   

6.
We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to investigate dynamics and helical packing in the four-helix transmembrane domain of the homodimeric bacterial chemoreceptor Trg. We focused on the first transmembrane helix, TM1, particularly on the nine-residue sequence nearest the periplasm, because patterns of disulfide formation between introduced cysteines had identified that segment as the region of closest approach among neighboring transmembrane helices. Along this sequence, mobility and accessibility of the introduced spin label were characteristic of loosely packed or solvent-exposed side chains. This was also the case for eight additional positions around the circumference and along the length of TM1. For the continuous nine-residue sequence near the periplasm, mobility and accessibility varied only modestly as a function of position. We conclude that side chains of TM1 that face the interior of the four-helix domain interact with neighboring helices but dynamic movement results in loose packing. Compared to transmembrane segments of other membrane proteins reconstituted into lipid bilayers and characterized by site-directed spin labeling, TM1 of chemoreceptor Trg is the most dynamic and loosely packed. A dynamic, loosely packed chemoreceptor domain can account for many experimental observations about the transmembrane domains of chemoreceptors.  相似文献   

7.
The glycine receptor is a member of the Cys-loop, ligand-gated ion channel family and is responsible for inhibition in the CNS. We examined the orientation of amino acids I229 in transmembrane 1 (TM1) and A288 in TM3, which are both critical for alcohol and volatile anesthetic action. We mutated these two amino acids to cysteines either singly or in double mutants and expressed the receptors in Xenopus laevis oocytes. We tested whether disulfide bonds could form between A288C in TM3 paired with M227C, Y228C, I229C, or S231C in TM1. Application of cross-linking (mercuric chloride) or oxidizing (iodine) agents had no significant effect on the glycine response of wild-type receptors or the single mutants. In contrast, the glycine response of the I229C/A288C double mutant was diminished after application of either mercuric chloride or iodine only in the presence of glycine, indicating that channel gating causes I229C and A288C to fluctuate to be within 6 Å apart and form a disulfide bond. Molecular modeling was used to thread the glycine receptor sequence onto a nicotinic acetylcholine receptor template, further demonstrating that I229 and A288 are near-neighbors that can cross-link and providing evidence that these residues contribute to a single binding cavity.  相似文献   

8.
Due to high temperature factors and the lack of considerable electron density, electron microscopy and X-ray experiments on the cytoplasmic E-F loop of bacteriorhodopsin result in a variety of structural models. As the experimental conditions regarding ionic strength, temperature and the presence of detergents may affect the structure of the E-F loop, we employ electron paramagnetic resonance and site-directed spin-labeling to study the structure of this loop under physiological conditions. The amino acid residues at positions 154 to 171 were replaced by cysteine residues and derivatized with a sulfhydryl-specific nitroxide spin label one by one. The conventional and power saturation electron paramagnetic spectroscopy provide the mobility of the nitroxide and its accessibility to dissolved molecular oxygen and membrane-impermeable chromium oxalate in the respective site. The results show that K159 and A168 are located at the water-lipid interface of helices E and F, respectively. The orientation of the amino acid side-chains in the helical regions from positions 154 to 159 and 166 to 171 were found to agree with published structural data for bacteriorhodopsin. In the residue sequence from positions 160 to 165 the EPR data yield evidence for a turned loop structure with the side-chains of M163 and S162 oriented towards the proton channel and the water phase, respectively.  相似文献   

9.
Mechanosensitive channels rescue bacterial cells from a fate of lysis when they transfer from a high- to low-osmolarity environment. Of three Escherichia coli mechanosensitive proteins studied to date, only MscS-Ec demonstrates a small anionic preference and a desensitized, nonconducting state under sustained pressure. Little is known about the mechanisms generating these distinctive properties. Eliminating the sole positive charge in the MscS-Ec pore region (Arg88) did not alter anionic preference. Adding positive charges at either end of the pore did not augment anionic preference, and placing negative charges within the pore did not diminish it. Thus, pore charges do not control this characteristic. However, from this analysis we identified mutations in the hinge region of the MscS-Ec pore helix (at Gly113) that profoundly affected ability of the channel to desensitize. Substitution with nonpolar (Ala, Pro) or polar (Asp, Arg, Ser) residues inhibited transition to the desensitized state. Interestingly, Gly113 replaced with Met did not impede desensitization. Thus, although Gly is not specifically required at position 113, MscS desensitization is strongly influenced by the residue situated here. Mutations at residues further into the pore also regulated desensitization. Transition to this unique mechanosensitive channel state is discussed in terms of existing data.  相似文献   

10.
Staphylococcal protein A (SpA) is a virulence factor from Staphylococcus aureus that is able to bind to immunoglobulins. The 3D structures of its immunoglobulin (Ig) binding domains have been extensively studied by NMR and X-ray crystallography, and are often used as model structures in developing de novo or ab initio strategies for predicting protein structure. These small three-helix-bundle structures, reported in free proteins or Ig-bound complexes, have been determined previously using medium- to high-resolution data. Although the location and relative orientation of the three helices in most of these published 3D domain structures are consistent, there are significant differences among the reported structures regarding the tilt angle of the first helix (helix 1). We have applied residual dipolar coupling data, together with nuclear Overhauser enhancement and scalar coupling data, in refining the NMR solution structure of an engineered IgG-binding domain (Z domain) of SpA. Our results demonstrate that the three helices are almost perfectly antiparallel in orientation, with the first helix tilting slightly away from the other two helices. We propose that this high-accuracy structure of the Z domain of SpA is a more suitable target for theoretical predictions of the free domain structure than previously published lower-accuracy structures of protein A domains.  相似文献   

11.
Wang JY  Lee HM  Ahmad S 《Proteins》2005,61(3):481-491
A multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.9% and 16.2% mean absolute error respectively, which is better than or comparable to the best available methods. A correlation matrix for several neighbor positions to examine the role of evolutionary information at these positions has been developed and analyzed. As expected, the effective frequency of hydrophobic residues at target positions shows a strong negative correlation with solvent accessibility, whereas the reverse is true for charged and polar residues. The correlation of solvent accessibility with effective frequencies at neighboring positions falls abruptly with distance from target residues. Longer protein chains have been found to be more accurately predicted than their smaller counterparts.  相似文献   

12.
A simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the residual secondary structure elements in the acid-denatured state of an acyl-coenzyme A binding protein. This method reveals a clear correlation between the carbon secondary chemical shifts and the amide secondary chemical shifts 3-5 residues away in the primary sequence. These findings strongly suggest transient formation of short helix-like segments, and identify unique sequence segments important for protein folding.  相似文献   

13.
Mechanosensation in bacteria involves transducing membrane stress into an electrochemical response. In Escherichia coli and other bacteria, this function is carried out by a number of proteins including MscL, the mechanosensitive channel of large conductance. MscL is the best characterized of all mechanosensitive channels. It has been the subject of numerous structural and functional investigations. The explosion in experimental data on MscL recently culminated in the solution of the three-dimensional structure of the MscL homologue from Mycobacterium tuberculosis. In this review, much of these data are united and interpreted in terms of the newly published M. tuberculosis MscL crystal structure.  相似文献   

14.
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current–voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.  相似文献   

15.
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190 residue C-terminal colicin E1 channel domain is the largest polypeptide to have been characterized by 15N solid-state NMR spectroscopy in oriented membrane bilayers. The 15N-NMR spectra of the colicin E1 show that: (1) the structure and dynamics are independent of anionic lipid content in both oriented and unoriented samples; (2) assuming the secondary structure of the polypeptide is helical, there are both trans-membrane and in-plane helical segments; (3) trans-membrane helices account for approximately 20-25% of the channel polypeptide, which is equivalent to 38-48 residues of the 190-residue polypeptide. The results of the two-dimensional PISEMA spectrum are interpreted in terms of a single trans-membrane helical hairpin inserted into the bilayer from each channel molecule. These data are also consistent with this helical hairpin being derived from the 38-residue hydrophobic segment near the C-terminus of the colicin E1 channel polypeptide.  相似文献   

16.
Although ionizable groups are known to play important roles in the assembly, catalytic, and regulatory mechanisms of Escherichia coli aspartate transcarbamylase, these groups have not been characterized in detail. We report the application of static accessibility modified Tanford-Kirkwood theory to model electrostatic effects associated with the assembly of pairs of chains, subunits, and the holoenzyme. All of the interchain interfaces except R1-R6 are stabilized by electrostatic interactions by -2 to -4 kcal-m-1 at pH 8. The pH dependence of the electrostatic component of the free energy of stabilization of intrasubunit contacts (C1-C2 and R1-R6) is qualitatively different from that of intersubunit contacts (C1-C4, C1-R1, and C1-R4). This difference may allow the transmission of information across subunit interfaces to be selectively regulated. Groups whose calculated pK or charge changes as a result of protein-protein interactions have been identified and the results correlated with available information about their function. Both the 240s loop of the c chain and the region near the Zn(II) ion of the r chain contain clusters of ionizable groups whose calculated pK values change by relatively large amounts upon assembly. These pK changes in turn extend to regions of the protein remote from the interface. The possibility that networks of ionizable groups are involved in transmitting information between binding sites is suggested.  相似文献   

17.
Synechocystis sp strain PCC 6803 contains one gene encoding a putative large conductance mechanosensitive channel homolog [named SyMscL (slr0875)]. However, it is unclear whether SyMscL contributes to the adaptation to hypoosmotic stress in Synechocystis. Here we report the in vivo characteristics of SyMscL. SyMscL was mainly expressed in the plasma membrane of Synechocystis. Cell volume monitoring using stopped-flow spectrophotometry showed that ΔsymscL cells swelled more rapidly than wild-type cells under hypoosmotic stress conditions. Expression of symscL was under circadian control, and its peak corresponded to the beginning of subjective night. These results indicate that SyMscL functioned as one component of the osmotic homeostatic regulatory system of the cell coordinating the response of Synechocystis to daily metabolic osmotic fluctuations and environmental changes.  相似文献   

18.
The tension-driven gating transition in the large mechanosensitive channel MscL proceeds through detectable states of intermediate conductance. Gain-of-function (GOF) mutants with polar or charged substitutions in the main hydrophobic gate display altered patterns of subconducting states, providing valuable information about gating intermediates. Here we present thermodynamic analysis of several GOF mutants to clarify the nature and position of low-conducting conformations in the transition pathway. Unlike wild-type (WT) MscL, which predominantly occupies the closed and fully open states with very brief substates, the mild V23T GOF mutant frequently visits a multitude of short-lived subconducting states. Severe mutants V23D and G22N open in sequence: closed (C) --> low-conducting substate (S) --> open (O), with the first subtransition occurring at lower tensions. Analyses of equilibrium state occupancies as functions of membrane tension show that the C-->S subtransition in WT MscL is associated with only a minor conductance increment, but the largest in-plane expansion and free energy change. The GOF substitutions strongly affect the first subtransition by reducing area ((Delta)A) and energy ((Delta)E) changes between C and S states commensurably with the severity of mutation. GOF mutants also exhibited a considerably larger (Delta)E associated with the second (S-->O) subtransition, but a (Delta)A similar to WT. The area changes indicate that closed conformations of GOF mutants are physically preexpanded. The tension dependencies of rate constants for channel closure (k(off)) predict different positions of rate-limiting barriers on the energy-area profiles for WT and GOF MscL. The data support the two-gate mechanism in which the first subtransition (C-->S) can be viewed as opening of the central (M1) gate, resulting in an expanded water-filled "leaky" conformation. Strong facilitation of this step by polar GOF substitutions suggests that separation of M1 helices associated with hydration of the pore in WT MscL is the major energetic barrier for opening. Mutants with a stabilized S1 gate demonstrate impeded transitions from low-conducting substates to the fully open state, whereas extensions of S1-M1 linkers result in a much higher probability of reverse O-->S transitions. These data strongly suggest that the bulk of conductance gain in the second subtransition (S-->O) occurs through the opening of the NH2-terminal (S1) gate and the linkers are coupling elements between the M1 and S1 gates.  相似文献   

19.
The bacterial mechanosensitive channel MscS provides an excellent model system for the study of mechanosensitivity and for investigations into the cellular response to hypoosmotic shock. Numerous studies have elucidated the structure, function and gating mechanism of Escherichia coli MscS, providing a wealth of information for the comparative analysis of MscS family members in bacteria, archaea, fungi and plants. We recently reported the electrophysiological characterization of MscS-Like (MSL)10, a MscS homolog from the model flowering plant Arabidopsis thaliana. Here we summarize our results and briefly compare MSL10 to previously described members of the MscS family. Finally, we comment on how this and other recently published studies illuminate the possible mechanisms by which ion selectivity is accomplished in this fascinating family of channels.  相似文献   

20.
Site directed spin-labeling (SDSL) has been used to probe the structural and dynamic features of residues comprising the sixth transmembrane segment of the mitochondrial oxoglutarate carrier. Starting from a functional carrier, where cysteines have been replaced by serines, 18 consecutive residues (from G281 to I298) have been mutated to cysteine and subsequently labeled with a thiol-selective nitroxide probe. The labeled proteins, reconstituted into liposomes, have been assayed for their transport activity and analyzed with continuous-wave electron paramagnetic resonance. Linewidth analysis, that is correlated to local probe mobility, indicates a well defined periodicity of the whole segment from G281 to I298, indicating that it has an α-helical structure. Saturation behaviour, in presence of paramagnetic perturbants of different hydrophobicities, allow the definition of the polarity of the individual residues and to assign their orientation with respect to the lipid bilayer or to the water accessible translocation channel. Comparison of the EPR data, homology model and activity data indicate that the segment is made by an alpha helix, accommodated in an amphipathic environment, partially distorted in the middle at the level of L289, probably because of the presence of a proline residue (P291). The C-terminal region of the segment is less restrained and more flexible than the N-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号