首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We report extensive density functional theory studies of the structures and vibrational frequencies of Tp3,5-MeRhH2(H2) in its ground and various transition states as well as the first direct comparison of observed and calculated inelastic neutron scattering (INS) vibrational spectra on this type of compound. Geometry optimizations produced canted η2-dihydrogen dihydride local minima of C1 symmetry; with HH distances for the C1 minimum energy structure of 0.842 and 0.898 Å and barriers to rotation of 0.34 and 0.50 kcal mol−1, respectively for B3LYP/BS1 and BP86/BS1 calculations of Tp3,5-MeRhH2(H2). The latter results from one transition state rotated approximately 60° away (a second lower energy transition state which is a few hundreds of a kcal mol−1 above the C1 MIN is rotated approximately 30° away). With these calculated d(HH) values for the C1 MIN the previously reported experimental data on the rotation of the dihydrogen ligand yields an experimental barrier to rotation of 1 kcal mol−1 and places the torsional transition at 200 cm−1 in the INS spectrum. Optimization of the Rh structure, that is analogous to the related Ir(V) Cs minimum found for TpIrH4, generates a high-energy (>4 cal mol−1) Cs transition state TpRhIIIH4 structure with an η3-H3 − ligand. This transition state (Cs TSE) exchanges the hydrogen in the mirror plane between two chiral C1 MIN structures. Comparisons between observed and computed INS spectra suggests that the experimental INS spectrum be viewed as resulting from a quantum-averaged ground state encompassing at least two of the low energy structures found in our calculations.  相似文献   

2.
The effects of low temperature assay (5 °C) on the properties of the aerobic (low phosphate) vs. anoxic (high phosphate) forms of pyruvate kinase (PK) from foot muscle and gill of the whelk Busycon canaliculatum (L.) were assessed at two pH values, pH 7.00 and 7.25, and compared to control conditions of 20 °C and pH 7.00 (all assayed in imidazole buffer). When pH was held constant at 7.00, the decrease in assay temperature to 5 °C had large effects on the measured kinetic parameters of all PK forms, as compared to 20 °C and pH 7.00. However, when assay pH was allowed to rise, from 7.00 to 7.25, with the temperature decrease to 5 °C there were fewer alterations of kinetic parameters and quantitatively smaller changes to enzyme properties. It appears, then, that when pH rises with decreasing temperature following alphastat predictions, kinetic properties of PK are largely conserved. Low temperature, at either pH value, had several significant effects on PK properties. For example, low temperature raised the S0.5 for phosphoenolpyruvate of PK-anoxic from gill by 3–6 fold and decreased the I50 Mg · ATP for PK-anoxic from foot by the same amount. Arrhenius plots of PK activity for the gill PK forms showed a distinct break at 10 °C; > 10 °C Q10 was 2.5 whereas < 10 °C Q10 was 8.4. Temperature-dependent changes in all cases affected enzyme properties in a manner that would restrict enzyme function at low temperature.  相似文献   

3.
A general 3-D dynamic model for men's and women's discus flight is presented including precession of spin angular momentum induced by aerodynamic pitching moment. Dependence of pitching moment coefficient on angle of attack is estimated from experiment. Numerical integration of 11 equations of motion for nominal release speed v0=25 m/s and axial spin p0=42 rad/s also requires 3 other release conditions; initial discus flight path angle β0, pitch attitude θ0, and roll angle φ0. Optimal values for these release conditions are calculated iteratively to maximize range and are similar for both men and women. The optimal men's trajectory and range R=69.39 m is produced by the strategy β0=38.4°, θ0=30.7°, and φ0=54.4°. Initial angular velocities except spin are chosen to minimize wobble but an optimal initial spin rate p0=25.2 rad/s exists that also maximizes range. Optimal 3-D range exceeds that predicted by 2-D models because, although angle of attack and lift are negative initially, 3-D motion allows advantageous orientation of lift later in flight, with tilt of the axis of symmetry from vertical becoming much smaller at landing. Optimal strategies are discontinuous with wind speed, resulting in slicing and kiting strategies in large head and tail winds, respectively. Sensitivity of optimal range is largest to initial β0 and least to φ0. Present calculations do not account for dependence of initial release angle or spin on release velocity or among other release conditions.  相似文献   

4.
0-group Carcinus maenas (L.) was investigated from June 1975 to September 1976 on a shallow sandy bottom at Kvarnbukten Bay, Gullmar Fjord (58° 15′N: 11°28′E), Sweden, at an average salinity of 25% and a range of monthly mean temperatures of −0.3 to 197. °C.

The new year-class settles from August to early September at a carapace breath of 2 to 3 mm and a calorific content of 32 cal. The distribution is restricted to clusters of the mussel Mytilus edulis L. Depth, type of substratum, and patches of the eel-grass Zostera marina L. are of no importance for their spatial distribution. There is no migration to deeper water in the autumn. The carapace breadth is ≈ 9.5 mm after one year of benthic life. Sexual maturity is reached after two years. Growth occurs at temperatures above 10 °C, i.e., from August to October and from May to July. During the first year of benthic life the animals moult 7 times. The 0-group seems to be micro-carnivores feeding on the sediment meiofauna.

The individual energy budget for the first year of benthic life is: consumption (Cc) 905 cal., production (P1c) 236 cal., cast carapaces (P2c) 153 cal., respiration (Rc) 404 cal., and rejectiction (Fc) 112 cal. The assimilation efficiency (Uc−1) is 88%, the gross growth efficiency (K1c) 43%, and the net growth efficiency (K2c) 49%.

At Kvarnbukten Bay there are large variations in size between the separate year-classes. The energy content of the food consumed by the 1975/76 cohort was used as follows: 4% was stored in living biomass after one year, 36% was released to other trophic levels as dead animals and cast carapaces, 13% rejected as faeces, and 47% was lost through respiration.  相似文献   


5.

1. 1. Seven thermal conditions were imposed on male sitting subjects (slightly clothed: 0.6 clo).

2. 2. A thermal mannikin was also used to determine the exact operative temperature, T0.

3. 3. Conditions were: uniform (UN: all parameters at 24.5°C, air velocity at 0.15 ms−1), heated ceiling (HC at 45°C), heated floor (HF at 34°C), cold floor (CF at 14°C), two conditions of one cold wall at 6°C (CW1 and CW2 respectively with and without air temperature compensation) and increased air velocity (AV at 0.4 ms−1).

4. 4. Local skin temperatures and answers to questionnaires were obtained.

5. 5. Skin temperature variations were affected by conditions and slight T0 changes.

6. 6. Comfort judgments were fairly well related to T0, especially when expressed as differences between actual non-uniform environment and the uniform one.

7. 7. It is concluded that, in case of non-uniform environments close to thermoneutral zone, thermal comfort or discomfort reflects the climate alterations better than the thermal sensation does.

Author Keywords: Skin temperature; thermal sensation; comfort; climate heterogeneity  相似文献   


6.

1. 1. Cyanide inhibits the catalytic activity of cytochrome aa3 in both polarographic and spectrophotometric assay systems with an apparent velocity constant of 4·103 M−1·s−1 and a Ki that varies from 0.1 to 1.0 μM at 22 °C, pH 7·3.

2. 2. When cyanide is added to the ascorbate-cytochrome c-cytochromeaa3−O2 system a biphasic reduction of cytochrome c occurs corresponding to an initial Ki of 0.8 μM and a final Ki of about 0.1 μM for the cytochrome aa3−cyanide reaction.

3. 3. The inhibited species (a2+a33+HCN) is formed when a2+a33+ reacts with HCN, when a2+a32+HCN reacts with oxygen, or when a3+a33+HCN (cyano-cytochrome aa3) is reduced. Cyanide dissociates from a2+a33+HCN at a rate of 2·10−3 s−1 at 22 °C, pH 7.3.

4. 4. The results are interpreted in terms of a scheme in which one mole of cyanide binds more tightly and more rapidly to a2+a33+ than to a3+a33+.

Abbreviations: TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine  相似文献   


7.
The aim of this work is to examine the possible interaction and extent thereof of the polysaccharide galactomannan (GAL) with the cereal protein gliadin (GLI) and a peptic-tryptic degraded gliadin (PT-GLI) by analytical ultracentrifugation. The work is part of a series of investigations into the field of coeliac disease (gluten-induced enteropathy) as gliadins are known to be toxic for patients with this disease.

The molecular integrity of the GAL and GLI preparations was first checked by sedimentation velocity and sedimentation equilibrium. Sedimentation velocity showed single boundaries indicating homogeneity and low-speed sedimentation equilibrium gave plausible apparent weight average molar masses of 180,000 g/ mol for GAL and 20,000 g/mol for GLI. PT-GLI, GLI and GAL in phosphate buffer (pH 6.5) and the incubated mixtures (stirred for 3 h at 37 °C; PT-GLI: GAL = 3.53:1, wt.wt.; GLI:GAL = 0.23 and 0.55:1, wt.wt.) were then investigated by sedimentation velocity at a temperature of 20 °C. The plots of 1/s20 vs. c of GAL, PT-GLI-GAL and GLI-GAL mixtures after incubation show a significantly different shape suggesting the presence of interactions. According to the equation 1/s20 = 1/so20(1 + ksc), values for {so20, ks} of {(4.02 ± (490.9 ± 28.9) ml/g, {(5.92 ± 0.24) S, (1152 ± 44) ml/g} and {(5.38 ± 0.19) S, (1141 ± 38) ml/g} for GAL and PT-GLI-GAL and GLI-GAL mixtures, respectively, were obtained. The concentration of GAL ranged from 0.75–3.0 mg/ml for GAL alone and from 0.34–1.50 mg/ml in the incubated mixtures. This apparent indication for a weak non-covalent protein-polysaccharide interaction was further supported by UV absorption spectrometry and gel filtration.  相似文献   


8.
Larvae of Carcinus maenas L. were reared in the laboratory from hatching through metamorphosis at 9, 12, and 18°C. Dry weight (DW) and elemental contents of carbon (C), nitrogen (N), and hydrogen (H) were analysed at short intervals through successive larval moulting cycles (four zoea-stages, megalopa), and newly metamorphosed crabs. C. maenas larvae grew significantly during all instars, at all temperatures tested. Biomass (DW, C, N, H) and energy (Joule) slightly declined shortly before ecdysis in zoea stages. This terminal decrease was more distinct in the megalopa stage, where ≈39 and 83% of the maximum energy attained, was lost at 12 and 18°C, respectively. Changes of biomass and energy in successive moult cycles showed best fits to quadratic equations, whereas their maximum in successive larval instars formed exponential sequences with time. Due to parabolic growth curves, biomass and energy accumulation within single instars were discussed as maximum (MG) and effective growth (EG), considering gain both at times of maximum biomass, and shortly before ecdysis. Metamorphosing larvae achieved EG with 1137% (DW), 1195% (C), 1108% (N), 1395% (H), 1339% (Joule) at 12°C, and 1140% (DW), 1099% (C), 1133% (N), 1225% (H), 1107% (Joule) at 18°C, relative to newly hatched zoea-1. Ash content and inorganic C in newly hatched zoea-1, were 29.4% and 5.5% ash, respectively. The stoichiometric C H N method of Gnaiger & Bitterlich was used to assess protein, lipid, and carbohydrate compositions. Obviously proteins formed the major part of larval biomass (>50% DW). C: N ratios indicate that more lipid than protein was built up shortly after moulting, but relatively more protein was subsequently accumulated. Temperature effects on larval growth (MG, EG), growth rates (GR), and gross growth efficiencies (K1) were discussed. C. maenas zoea stages accumulated energy and biomass with higher efficiencies at 18 than at 12°C. Megalopa growth seemed to be limited at 18°C, showing lower K1 values than at 12°C. N was accumulated with higher efficiencies than C in all larval stages. Characteristic variations in larval K1 values between premoult and ecdysis were discussed. Cumulative gross growth efficiencies (MG-related) were calculated as ≈11 and 10%, at 12 and 18°C, respectively.  相似文献   

9.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

10.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

11.
The complex [Ru(SB12H11)(NH3)5]·2H2O has been prepared by the reaction of Cs2B12H11SH with [RuCl(NH3)5]Cl2 in aqueous solution. The complex represents the first reported example of the borocaptate anion acting as a ligand. The structure of the complex has been determined by single crystal X-ray diffraction analysis. The crystal parameters are monoclinic, space group P21/c, A = 8.056(1), B = 14.240(2), C = 15.172(2) Å, β=98.48° and Z = 4. The ruthenium atom has a distorted octahedral coordination. The distortion is probably due to the high (3) charge and the large bulk of the borocaptate ligand. These features can also be observed in the spectroscopic properties of the complex.  相似文献   

12.
The kinetics and equilibria of complex formation by Ga(III) with NCS in aqueous solution have been measured over a range of acidities and temperatures, the contributing paths to the reaction resolved, and their rate constants and activation parameters determined. The hydrolysis equilibria required to carry out this resolution of kinetic behaviour have also been measured.

Unlike the other reported complexation reactions of Ga(III) in aqueous solution, the separate reaction pathways can be assigned with no ambiguity. At 25 °C and ionic strength 0.5 M, the observed forward rate constant for the complex formation is described by {k1 + k2K1h/[H+] + k3K1hK2h/[H+]2} M−1 s−1. For these conditions, the first and second successive hydrolysis constants of Ga(H2O)63+ are given by pK1h = 3.69 ± 0.01 and pK2h = 3.74 ± 0.04. The rate constants corresponding to the reactions of the species Ga(H2O)63+, Ga(H2O)5(OH)2+ and Ga(H2O)4(OH)2+ with NCS are k1 = 57 ± 4 M−1 −1, k2 = (1.08 ± 0.01) × 105 M−1 s−1 and k3 = 3 × 106 M−1 s−1 respectively. The complexation equilibrium quotient [GaNCS2+]/([Ga3+][NCS]) has been independently determined by spectrophotometric titration to be 20.8 ± 0.3 M−1 at 25 °C and ionic strength 0.5 M.

These kinetic results lead to an interpretation of the data, and a reinterpretation of other data for aquo-Ga(III) complex formation kinetics from the literature which support the assignment of a dissociative interchange mechanism for these reactions rather than the associative activation mode sometimes proposed.  相似文献   


13.
The structures of the complexes [PbL2], L = 1-phenyl-3-methyl-4-acylpyrazolonato, RCOC10H8N2O, R = Me (2) or Pr (3), have been determined by X-ray diffraction studies. Compound 2 is monoclinic, space group P21, A = 11.285(4), B = 14.727(4), C = 20.749(5) Å, β = 95.83(3)°, R = 0.039 for 4486 reflections, and 3 is monoclinic, space group C2/c, A = 27.528(11), B = 7.245(11), C = 14.264(7) Å, β = 113.6(3)°, R = 0.021 for 2118 reflections. There are three different lead environments in 2 but only one in 3. In each case the lead atom makes four strong bonds to oxygen and two weaker bonds to either oxygen or nitrogen in adjacent molecules.  相似文献   

14.
Unlike ZrCl4, ZrBr4 is not ammonolysed in liquid ammonia at temperatures up to −33 °C. The existence of ammoniates ZrBr4nH3 (n = 17, 12 and 9) at −36 °C has been established; at room temperature, the hexammine ZrBr4 · 6NH3 is the stable species which becomes ZrBr4 · 2NH3 at 200 °C. When treated with an excess of NH4CN in liquid ammonia, complete replacement of bromide ions by cyanide occurs to give an inseparable mixture of Zr(CN)4 · 2NH3 and NH4Br. The chloride and bromide of zirconium(III) also undergo no ammonolysis in liquid ammonia; the ammoniates stable at room temperature are ZrCl3 · 2.5NH3 and ZrBr3 · 6NH3.  相似文献   

15.
This short paper presents preliminary results on the ‘zero-shear’ specific viscosity ηsp0 of a commercial hydroxyethylmethylcellulose (Tylose MH-4000) in water, at the temperatures 10, 25 and 40·5°C, over a wide range of concentrations. At the two higher temperatures, two regions are found in the plot of logC[η]0 against logηsp0 with a C*[η]0 value of about 2·5. This is consistent with the behaviour of other random-coil polymers. At 10°C however, there is an interesting ‘upward shift’ in this plot in the dilute region. It is suggested that this is related to the different degree of hydration of the oligo(ethyleneoxide) side chains at this temperature.  相似文献   

16.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

17.
分析植物个体短期水分利用效率(WUEp)对CO2浓度(Ca)和土壤含水量(SWC)的响应,可提高对气候变化下个体生存策略的认识。本研究以侧柏幼树为对象,在模拟气候箱中进行培养试验,设400(C400)、600(C600)和800 μmol·mol-1CO2(C800)浓度处理和35%~45%田间持水量(FC)、50%~60%FC、60%~70%FC、70%~80%FC、95%~100%FC土壤含水量处理,共15个处理。WUEpCa和SWC的响应用包裹式茎流计、称重法结合静态同化箱测定。结果表明: 个体日间(0.12~1.87 mol·h-1)和夜间蒸腾速率(0.01~0.16 mol·h-1)均在C400×70%~80%FC时达到最大值,个体日间净光合速率(2.12~22.10 mmol·h-1)在C800×70%~80%FC时达到最大值,而个体夜间呼吸速率(0.84~4.41 mmol·h-1)随SWC的增加而增加,随Ca的增加而减小,在C400×95%~100%FC时达到最大值。WUEp(5.37~24.35 mmol·mol-1)在C800×50%~60%FC时达到最大值,表明高Ca和干旱条件下,植物个体可通过生理可塑性调整,利用较少的水分固定更多的碳;此外,当个体间形态特征差异较小时,叶片瞬时水分利用效率可以较好地指示WUEP的变化。  相似文献   

18.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

19.
The structural behaviour of the human heel pad has been studied extensively due to its ability to absorb shock, protect against excessive local stress, and reduce plantar pressures. However, the material properties of the tissue have not been adequately measured. These must be known in order to perform a finite element analysis of the effect of factors such as foot geometry and shoe/surface construction on heel pad function. Therefore, the purposes of this study were to (a) measure the viscoelastic behaviour of the fat pad in compression, and (b) to determine an appropriate constitutive equation to model the tissue. A series of unconfined compression tests were performed on 8 mm diameter cylinders of fat pad tissue, consisting of quasi-static, 175, 350 mm/s and stress-relaxation tests to 50% deformation. The tissue exhibited nonlinear, viscoelastic behaviour. No significant difference was found in the quasi-static behaviour between samples from different locations and orientations in the heel. The stress-relaxation tests were used to determine the time constant (τ1=0.5 s), the 175 mm/s test to determine the relaxation coefficient (g1=28), and the 350 mm/s compression test to determine the material constants (C100=C010=0.01, C200=C020=0.1 Pa) of a single-phase, hyperelastic, linear viscoelastic strain energy function (r2=0.98).  相似文献   

20.
The adsorption of iron(III), lead(II) and cadmium(II) ions onto Schizomeris leibleinii, a green alga, was studied with respect to initial pH, temperature, initial metal ion and biomass concentration to determine the optimum adsorption conditions. Optimum initial pH for iron(III), lead(II) and cadmium(II) ions were 2.5, 4.5 and 5.0 at optimum temperature 30°C, respectively. The initial adsorption rates increased with increasing initial iron(III), lead(II) and cadmium(II) ion concentrations up to 100, 100 and 150 mg l−1, respectively. The Freundlich and Langmuir adsorption isotherms were developed at various initial pH and temperature values. The adsorption of these metal ions to S. leibleinii was investigated in a two-stage mixed batch reactor. The residual metal ion concentrations (Ceq) at equilibrium at each stage for a given ‘quantity of dried algae (X0)/volume of solution containing heavy metal ion (V0)’ ratio were calculated using Freundlich and Langmuir isotherm constants. The experimental biosorption equilibrium data for iron(III), lead(II) and cadmium(II) ions were in good agreement with those calculated by both Freundlich and Langmuir models. The adsorbed iron(III), lead(II) and cadmium(II) ion concentrations increased with increasing X0/V0 ratios while the adsorbed metal quantities per unit mass of dried algae decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号