首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
Dimers formed in aerated methyl linoleate hydroperoxides were decomposed in liquid paraffin by bubbling with dry air at 30°C for 24 hr to identify the decomposition products. The aerated dimers were fractionated according to their molecular weights by gel permeation chromatography. Identification of the monomeric (25.6%) and low molecular fission products (10.8%) by gas chromatography-mass spectrometry showed the major monomers as methyl hydroxy-octadecadienoate, methyl hydroxy (or hydroperoxy)-epoxy-octadecenoate, methyl dihydroxy (or hydroperoxy)-octadecenoate, methyl trihydroxy (or hydroperoxy)-octadecenoate; and the major fission products as methyl 8-hydroxy-octanoate, 4-hydroxy (or hydroperoxy)-nonanal or -2-nonenal, methyl 12-oxo-9-hydroxy (or hydroperoxy)-dodecanoate or -10-dodecenoate, and methyl 11-oxo-9-undecenoate.

The monomeric products were presumed to be derived from alkoxy radicals generated by the cleavage of peroxy linkages in the dimers, whereas the low molecular products were suggested to be raised by the direct carbon-carbon scission of oxygenated ester moieties on both sides of the peroxy bonds.  相似文献   

2.
The methodology for deriving class II force fields has been applied to acetal, hemiacetal, and carbohydrate compounds. A set of eighteen model compounds containing one or more anomeric centers was selected for generating the quantum mechanical energy surface, from which the force field was derived and the functional form assessed. The quality of the fit was tested by comparing the energy surface predicted by the force field with ab initio results. Structural, energetic, and dynamic properties (vibrational frequencies) were analyzed. In addition, α and β anomeric equilibrium structures and energies of 2-methoxytetrahydropyran, 2-deoxyribose, and glucose were computed at the HF/6-31G* and higher ab initio levels. These calculations provide test data from molecules outside the training set used to derive the force field. The quantum calculations were used to assess the ability of the class II force field and two quadratic diagonal (class I) force fields, CVFF, and Homans' extension of the AMBER force field, to account for the anomeric effects on the structural and energetic properties of carbohydrate systems. These class I force fields are unable to account for observed structural and energetic trends, exhibiting deviations as large as 5 kcal/mol in relative energies. The class II force field, on the other hand, is shown to reproduce anomeric structural as well as energetic differences. An energy component analysis of this force field shows that the anomeric differences are dominated by torsional energies, although coupling terms, especially angle/torsion, also make significant contributions (roughly 1 kcal/mol in glucose). In addition, the force field accurately accounts for both anomeric and exo-anomeric energy differences in 2-methoxytetrahydropyran, and anomeric energy differences in 2-deoxyribose and glucose. © 1998 John Wiley & Sons, Inc. Biopoly 45: 435–468, 1998  相似文献   

3.
Activation of rat brain protein kinase C by lipid oxidation products   总被引:3,自引:0,他引:3  
The unsaturated fatty acid components of membrane lipids are susceptible to oxidation in vitro and in vivo. The initial oxidation products are hydroperoxy fatty acids that are converted spontaneously or enzymatically to a variety of products. Hydroperoxy derivatives of oleic, linoleic, or arachidonic acids stimulate the activity of protein kinase C (PKC) purified from rat brain. The hydroperoxy acids satisfy the requirement of PKC for phospholipid (e.g., phosphatidylserine). Activation is observed in the presence or absence of 1 mM Ca2+. Reduction of the hydroperoxides to alcohols or dehydration of the hydroperoxides to ketones increases the Ka for activation three- to fourfold but does not significantly reduce the maximal extent of PKC activation. The Ka's for activation by hydroperoxy acids are approximately half the values exhibited by the unoxidized fatty acids. Since oxidation of unsaturated fatty acids to hydroperoxides is the first event in lipid peroxidation, activation of PKC by hydroperoxy fatty acids may be an early cellular response to oxidative stress.  相似文献   

4.
Stereochemical properties of the glycosidic linkage have been studied by the quantum-chemical PCILO method, using 2-methoxytetrahydropyran as a model. Calculations of the two-dimensional, conformational (Φ, Ψ) maps showed that the rotation around the C-1---O-1 bond is more hindered than that around the O-1---C-6 bond, and that there are differences in the shape of the energy curve for the axial and equatorial forms of 2-methoxytetrahydropyran. The observed population of the five stable conformers at equilibrium (GG:GT:TG1:TG2:TT = 70.8:6.0:19.9:2.0:1.3) is consistent with the prediction of the anomeric and exo-anomeric effects. The calculated abundance (76.8%) of the axial form of 2-methoxytetrahydropyran is comparable with experimental results (77–80%) obtained by n.m.r. measurements in non-polar solvents. The energies found for individual conformers made it possible to calculate the magnitude of the anomeric effect (3 kJ/mol) and to determine, for the first time, the values of the exo-anomeric effect for axial (6 kJ/mol) and equatorial 2-methoxytetrahydropyran (7 kJ/mol). The calculated variations of the geometry arising from rotation around the C-1---O-1 bond are consistent with results obtained by statistical analysis of experimental data for - and β-glycosides. The results obtained, indicating that the energy, geometry, and electronic structure of glycosides are largely affected by the conformation of the acetal segment, are discussed from the point of view of conformational analysis of oligo- and poly-saccharides.  相似文献   

5.
Soybean lipoxygenase-1 was irreversibly inactivated by various peroxy acids containing a cis,cis-1,4-pentadiene group. Among these compounds, 15(S)-hydroperoxyeicosatetraenoic acid (15(S)-HPETE)2 was found to be the most effective in the inactivation of lipoxygenase. Although the prior exposure of 15(S)-HPETE to hemoglobin abolished the inhibitory effect of 15(S)-HPETE, the simultaneous inclusion of hemoglobin potentiated the inactivation of lipoxygenase by 15(S)-HPETE alone. Interestingly, the potentiating effect of hemoglobin was observed only in the incubations with peroxy acids possessing the cis,cis-1,4-pentadiene. In either the presence or the absence of hemoglobin, it was commonly observed that the enzyme inactivation, which was maximal at pH 10, was significantly protected by tocopherol, but neither by mannitol nor ethanol, and that the inclusion of arachidonic acid or linoleic acid prevented the enzyme inactivation. Based on these results, it is suggested that the selective inactivation of lipoxygenase by these peroxy acids may be due to unstable intermediates produced from hydroperoxy acids bound to the active site of lipoxygenase.  相似文献   

6.
The conformational behavior of methyl(2-O-methyl-alpha-L-rhamnopyranosyl)phosphate, together with a group of potentially more stable analogues, was investigated through a DFT approach at the B3LYP/6-31G(d) level; the energy of all the optimized structures was recalculated using a continuum solvent model, C-PCM, choosing water as the solvent. The compounds exhibited several, sometimes tenths of populated conformations so that the overall properties of flexibility and mobility were evaluated. The analogue in which the pyranose oxygen atom is replaced by a methylene group emerges as the best candidate as a mimic of the reference 1-phosphate, in spite of the fact that it lacks the anomeric and exo-anomeric effects. The other analogues result poorer mimics because of a conformational equilibrium at the pyranose ring or of an excessive rigidity of the aglycone moiety.  相似文献   

7.
The SPASIBA force field has been applied to the determination of the structure and dynamical properties of various disaccharides. It has been shown that the experimental properties (structure, dipole moment, conformational relative energies) are satisfactorily predicted. The anomeric and exo-anomeric effects are confidently reproduced without specific terms for the alpha and beta anomers and the type of glycosidic linkages.  相似文献   

8.
Energy surfaces were computed for relative orientations of the relaxed pyranosyl rings of the two anomeric forms of kojibiose, nigerose, and maltose, the (1 → 2)-, (1 → 3)-- and (1 → 4)--linked -glucosyl disaccharides, respectively. Twenty-four combinations of starting conformations of the rotatable side-groups were considered for each disaccharide. Optimized structures were calculated using MM3 on a 20° grid spacing of the torsional angles about the glycosidic bonds. The energy surfaces of the six disaccharides were similar in many respects but differed in detail within the low-energy regions. The maps also illustrate the importance of the exo-anomeric effect and linkage type in determining the conformational flexibility of disaccharides. Torsional conformations of known crystal structures of maltosyl-containing molecules lie in a lower MM3 energy range than previously reported.  相似文献   

9.
The effect of oxygen on the radiolysis of tyrosine in aqueous solutions was investigated by using gamma and pulsed electron irradiation. Steady-state radiolysis was reexamined and extended to include the effect of pH and determination of hydrogen peroxide. The loss of tyrosine, G(-Tyr), during irradiation and yields of 3,4-dihydroxyphenylalanine, G(DOPA), and hydrogen peroxide, G(H2O2), are determined in the pH range from 1 to 9. In the whole pH range used G(-Tyr) equals G(DOPA), and a higher G(H2O2) than expected was observed. In slightly acid and neutral media, both G(-Tyr) and G(DOPA) equal the yield of hydroxyl radicals, GOH, formed in the radiolysis of water, while the excess of hydrogen peroxide equals 1/2 GOH. Hence it was concluded that all tyrosine OH-adducts react with oxygen yielding peroxy radicals. In acid and alkaline media all measured yields decrease. This is caused by formation of tyrosine phenoxyl radicals (TyrO), which react with superoxide anion (O2-) and hydroperoxy (HO2) radicals regenerating tyrosine. By using pulse radiolysis K(TyrO + O2) less than or equal to 2 X 10(5) mol-1 dm3 s-1 and k(TyrO + O2-) = (1.7 +/- 0.2) X 10(9) mol-1 dm3 s-1 were determined. On the basis of the results, a reaction mechanism is proposed.  相似文献   

10.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

11.
Lipid peroxidation results in the formation of peroxy and hydroperoxy metabolites of polyunsaturated fatty acids which can directly or indirectly affect many cellular processes. Lipid hydroperoxides are rapidly metabolized to the corresponding monohydroxy products by various cellular peroxidases. We have measured the amounts of monohydroxy metabolites of linoleic acid (18:2) and arachidonic acid (20:4) in lipids derived from aorta and LDL from rabbits fed a diet enriched in cholesterol and peanut oil for either 8 or 15 weeks. Increased amounts of the 9-hydroxy, and, to a lesser extent, the 13-hydroxy metabolite of 18:2 were observed in aorta and LDL from cholesterol-fed rabbits at both 8 and 15 weeks. The amounts of esterified 11-, 12- and 15-hydroxy metabolites of 20:4 in aortae from cholesterol-fed rabbits were similar to controls after 8 weeks, but about 3-fold higher after 15 weeks. These monohydroxy metabolites of 20:4 were also detected in LDL lipids in cholesterol-fed rabbits. The greater amounts of hydroxy-18:2 in the cholesterol-fed group could be explained by an approx. 2-4-fold increase in 18:2 in aorta and LDL. In contrast, the amounts of 20:4 in aortic lipids were lower in cholesterol-fed rabbits than in controls. Thus, the percentage of esterified 20:4 which had been oxidized to its 11, 12, and 15-hydroxylated metabolites was about 5-times higher in the cholesterol-fed group. Our results would be consistent with the hypothesis that increased amounts of peroxidized 18:2 and 20:4 in lipids could be involved in the development of atherosclerotic lesions in cholesterol-fed rabbits.  相似文献   

12.
13.
A method is presented for determination of the enantiomeric composition of hydroxyperoxides formed by enzymic oxygenation of unsaturated fatty acids. After reduction of the hydroperoxy group with NaBH4, and esterification, the positional isomers of the resulting hydroxy compounds are separated by high performance liquid chromatography. The latter are subsequently subjected to a chiral derivatization to form diastereomeric alpha-methoxy-alpha-trifluoromethylphenylacetate esters. Determination of the diastereomeric composition by a NMR shift experiment furnishes the enantiomeric composition of the parent hydroperoxides. The method has been applied to the hydroperoxides formed by incubation of linoleic acid by corn germ or soybean lipoxygenase. Our results indicate that under the conditions used the hydroperoxides are mainly enantiospecifically formed.  相似文献   

14.
Hydroxy and hydroperoxy fatty acids were labeled with 9-bromomethylacridine at room temperature. They were separated from the degradation products and less polar fatty acid derivatives on an octyl silicagel column, and put on an octadecyl silicagel column by on-line column switching. By this method, picomolar levels of the derivatives were measured with good reproducibility. The detection limit of 16-hydroxy-hexadecanoic acid as a representative was 0.9 pmol (S/N =3) and the relative standard deviation of its peak areas was 2.5% (18.5 pmol, n = 7). The method was used for the measurement of hydroxy fatty acids derived from hydroperoxy fatty acids and phosphatidylcholine (PC) hydroperoxides spiked in human plasma. By incubation at 37°C for 4h with human plasma, the hydroperoxy fatty acid was reduced to the corresponding hydroxy fatty acid. In this condition, the PC hydroperoxides showed a considerable decrease, however, a small portion (2.5–3%) of PC hydroperoxides decomposed gave the corresponding hydroxy fatty acids.  相似文献   

15.
The behavior of benzo[a]pyrene (B[a]P) during peroxidation of phosphatidylcholine (PC) liposomes initiated by an azo compound was investigated to examine the mechanism of quinone formation from carcinogenic B[a]P mediated by nonenzymatic lipid peroxidation occurring in vivo. B[a]P had a retarding effect on the peroxidation of polyunsaturated fatty acid moiety of PC. The major oxidation products which accumulated in the peroxidized liposomes were B[a]P 1,6-, 3,6-, and 6,12-quinone. Antioxidants acting as scavengers of chain-propagating lipid peroxy radicals effectively prevented not only lipid peroxidation but also B[a]P oxidation in the liposomal suspension. PC hydroperoxides, the primary products of PC oxidation, did not react with B[a]P in the absence of the azo compound, indicating that lipid peroxy radicals, not lipid hydroperoxides, are responsible for the formation of these quinones. The experiments using 18O2 gas and 18O-labeled methyl linoleate hydroperoxides demonstrated that B[a]P quinones are formed by incorporating molecular oxygen and their origin is partly due to the lipid peroxy radical. The mechanism proposed for the formation of B[a]P quinones mediated by peroxidation of membrane lipids involves a direct attack of the lipid peroxy radical on B[a]P and subsequent autocatalytic oxidation. Weak carcinogenic and noncarcinogenic pentacyclic aromatic hydrocarbons showed little reactivity to the lipid peroxy radical in the liposomes. Thus, the facility of the peroxidative attack on B[a]P may be related to the powerful carcinogenic activity of this substance.  相似文献   

16.
We have prepared a series of naphthalene hydroperoxides (1-3) which possess hydroperoxy group at gamma-position of imide carbonyl. Upon photoirradiation (greater than 350 nm) hydroperoxides (1-3) decomposed with efficient generation of hydroxyl radical, which was confirmed by esr spin trapping technique using dimethylpyrroline oxide as a spin trapper. All these hydroperoxides induced DNA strand scission upon photoirradiation (greater than 350 nm), especially hydroperoxide 3 cleaved plasmid phi X 174 DNA (Form I) to give nicked (Form II) and linear (Form III) DNA even at 1 microM concentration. Further, it was observed that 3 exclusively cleaved DNA at the 5'-G site of -GG-sequence.  相似文献   

17.
Functional activation of mitochondrial uncoupling protein-2 (UCP2) is proposed to decrease reactive oxygen species production. Skulachev and Goglia (Skulachev, V. P., and Goglia, F. (2003) FASEB J. 17, 1585-1591) hypothesized that hydroperoxy fatty acid anions are translocated by UCPs but cannot flip-flop across the membrane. We found that the second aspect is otherwise; the addition of synthesized linoleic acid hydroperoxides (LAOOH, a mix of four isomers) caused a fast flip-flop-dependent acidification of liposomes, comparable with the linoleic acid (LA)-dependent acidification. Using Escherichia coli-expressed UCP2 reconstituted into liposomes we found that LAOOH induced purine nucleotide-sensitive H(+) uniport in UCP2-proteoliposomes with higher affinity than LA (K(m) values 97 microM for LAOOH and 275 microM for LA). In UCP2-proteoliposomes LAOOH also induced purine nucleotide-sensitive K(+) influx balanced by anionic charge transfer, indicating that LAOOH was also transported as an anion with higher affinity than linoleate anion, the K(m) values being 90 and 350 microM, respectively. These data suggest that hydroperoxy fatty acids are transported via UCP2 by a fatty acid cycling mechanism. This may alternatively explain the observed activation of UCP2 by the externally generated superoxide. The ability of LAOOH to induce UCP2-mediated H(+) uniport points to the essential role of superoxide reaction products, such as hydroperoxyl radical, hydroxyl radical, or peroxynitrite, initiating lipoperoxidation, the released products of which support the UCP2-mediated uncoupling and promote the feedback down-regulation of mitochondrial reactive oxygen species production.  相似文献   

18.
The air oxidation of 5,8,11,14-eicosatetraenoic [arachidonic] acid and its methyl ester is reported. A mixture of hydroperoxy arachidonic acid products was obtained from the oxidation and subsequent separation of the mixture by high pressure liquid chromatography led to pure hydroperoxides. One of these hydroperoxides, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, is a proposed intermediate in the biosynthesis of slow reacting substance of anaphylaxis.  相似文献   

19.
The conformational preferences about the C-N bond in N-(4-methoxyphenyl)-2,3,4,6-tetra-O-acetyl-alpha (1) and beta-D-glucopyranosylamine (2), in the solid state and in solution, have been investigated. The crystal structure of the axially substituted alpha anomer (1) indicates a conformational preference about the C-1-N bond in which nN-->sigma*C-O exo-anomeric interactions may be expressed, although this conformational preference is not displayed in solution. The solution conformation relieves steric interactions that result from expression of the exo-anomeric effect in the solid-state conformation. The conformational preference in the equatorially substituted beta anomer (2) both in solution and in the solid state is similar and permits expression of nN-->sigma*C-O exo-anomeric interactions. The structural data for 1 and 2 indicate significant differences in O-5-C-1-N-1 bond angles but insignificant differences in each of the O-5-C-1 or C-1-N-1 bond lengths. The J(C-1-H-1 coupling constants in 1 and 2 indicate a greater coupling constant for the alpha anomer that is consistent with a dominant nO-->sigma*C-H orbital interaction in the beta anomer that weakens the C-1-H-1 bond.  相似文献   

20.
gamma-Irradiation of rat liver microsomal suspensions resulted in the accumulation of both malondialdehyde (MDA) and lipid hydroperoxides. The presence of 2-mercaptopropionylglycine (MPG) during the irradiation period decreased the formation of MDA and lipid hydroperoxides in a dose (MPG)-dependent manner. This may be attributed to the ability of MPG to scavenge the free radicals produced by irradiation. Post-irradiation incubation of microsomes further enhanced the production of both MDA and lipid hydroperoxides; when high concentrations of MPG were present during the incubations the production of MDA and lipid hydroperoxides was substantially decreased. This antioxidant role of MPG was demonstrated for both pre-irradiated microsomes and liposomes and is thought to be due to the conversion of the hydroperoxy to hydroxy fatty acids within the lipid bilayer, as well as the scavenging action on initiating free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号