首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Leydig cells develop inappropriately in animals lacking testicular macrophages. We have recently found that macrophages from adult animals produce 25-hydroxycholesterol, an oxysterol involved in the differentiation of hepatocytes and keratinocytes. Therefore, we hypothesized that testicular macrophages also produce 25-hydroxycholesterol during the early postnatal period and that this oxysterol plays a role in the differentiation of Leydig cells. We assessed the production of 25-hydroxycholesterol and 25-hydroxylase mRNA by cultured testicular macrophages from rats at 10, 20, and 40 days of age. We also tested the long-term effects of 25-hydroxycholesterol on basal and LH-stimulated testosterone production, and 3beta-hydroxysteroid dehydrogenase activity as end points of Leydig cell differentiation in vitro. We found that testicular macrophages from animals at all ages produced both 25-hydroxycholesterol and 25-hydroxylase mRNA, with macrophages from 10-day-old animals having the highest steady-state levels of message. We also found that chronic exposure of Leydig cells to 25-hydroxycholesterol increased basal production of testosterone but decreased LH-stimulated steroidogenesis at all ages. Finally, 25-hydroxycholesterol increased 3beta-hydroxysteroid dehydrogenase activity in both progenitor and immature Leydig cells. These findings support the hypothesis that testicular macrophages play an important role in the differentiation of Leydig cells through the secretion of 25-hydroxycholesterol.  相似文献   

2.
The direct effects of hydrocortisone (HS) and adrenocorticotropin (ACTH) on testicular testosterone production were studied in purified immature pig Leydig cells in vitro. Leydig cells were obtained from 3- to 4-week-old piglet testes by enzymatical dispersion followed by discontinuous Percoll gradient centrifugation. Leydig cells were treated with HS and ACTH in the absence or presence of luteinizing hormone (LH) after 12 h of incubation. Media were collected 48 h later for testosterone and cyclic adenosine 3',5'-monophosphate (cAMP) measurement. Treatment of Leydig cells with increasing concentrations (0.001-10.0 micrograms/ml) of HS for 48 h resulted in a dose-dependent increase in basal and LH-stimulated testosterone production. Increasing duration (6-72 h) of treatment with HS (100 ng/ml) led to a time-dependent increase in basal and LH-stimulated testosterone production, achieving statistical significance by 48 and 24 h, respectively. HS increased LH-stimulated cAMP production. HS also increased testosterone production induced by (Bu)2 cAMP. Forskolin stimulated testosterone production to an extent comparable to that attained with LH, and HS augmented forskolin-stimulated testosterone production. HS enhanced the conversion of exogenous 17 alpha-hydroxyprogesterone to testosterone, but did not affect the conversion of pregnenolone and progesterone to testosterone, suggesting a specific stimulation of 17,20-desmolase. Porcine ACTH had no influence on basal and LH-stimulated testosterone production. These results suggest that HS directly stimulates immature pig Leydig cell steroidogenesis, at least in part via an enhancement of the generation of cAMP, leading to an increase in the activity of 17,20-desmolase.  相似文献   

3.
Retinoic acid (RA) was recently shown to modify testosterone secretion of the fetal testis in vitro. We characterized this effect by culturing rat testes explanted at various ages, from Fetal Day 14.5 to Postnatal Day 3. In basal medium, RA inhibited, in a dose-dependent manner, both basal and acute LH-stimulated testosterone secretion by testes explanted on Fetal Days 14.5, 15.5, and 16.5. It had no effect on testes from older animals. The negative effect of RA did not result from a diminution in the number of Leydig cells but from a decrease in P450c17 mRNA levels and in LH-stimulated cAMP production. However, the RA-induced decrease in P450C17 mRNA levels was also observed with neonatal testes, suggesting that this enzymatic step is no longer rate limiting at this developmental stage. To study the physiological relevance of RA effects, we used fetuses and neonates issued from mothers fed a vitamin A-deficient (VAD) diet, resulting in a threefold decrease of plasma retinol concentration. On Fetal Day 18.5 and on Posnatal Day 3, testosterone secretion by the testis ex vivo was significantly increased in VAD animals. This shows that the endogenous retinol inhibits differentiation and/or function of fetal Leydig cells before Fetal Day 18.5 and is required for the normal regression of fetal Leydig cell function that occurs after Fetal Day 18.5. In conclusion, our results show that retinoids play a negative role on the steroidogenic activity during the differentiation of rat fetal Leydig cells.  相似文献   

4.
The effects of excess corticosterone on luteinizing hormone (LH)-stimulated Leydig cell testosterone production and activity of 11beta-HSD was studied. Adult male rats (200-250 g body weight) were treated with corticosterone-21-acetate (2 mg/100 g body weight, i.m., twice daily) for 15 days. Another set of rats was treated with corticosterone (dose as above) plus LH (ovine LH 100 microg/kg body weight, s.c., daily) for 15 days. Corticosterone administration significantly increased serum and testicular interstitial fluid (TIF) corticosterone but decreased testosterone levels. Administration of LH with corticosterone partially prevented the decrease in serum and TIF testosterone. The oxidative activity of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) was significantly decreased in Leydig cells of rats treated with corticosterone alone and in combination with LH. The direct effect of corticosterone on Leydig cell steroidogenic potency was also studied in vitro. Addition of corticosterone to Leydig cell culture showed a dose dependent effect on LH-stimulated testosterone production. Corticosterone at 50 and 100 ng/ml did not alter LH-stimulated testosterone production, but at high doses (200-400 ng/ml), decreased basal and LH-stimulated testosterone production. Basal and LH-stimulated cAMP production was not altered by corticosterone in vitro. It is concluded from the present study that elevated levels of corticosterone decreased the oxidative activity of 11beta-HSD and thus resulting in impaired Leydig cell steroidogenesis and the inhibitory effects of corticosterone on testosterone production appear to be mediated through inhibition of LH signal transduction at post-cAMP level.  相似文献   

5.
Genistein is one of non-steroidal phytoestrogens present in soya and soybean products as well as in other legumes. Phytoestrogens possess estrogen-like biological activity and may influence human and animal reproduction. The aim of this study was to examine the effect of genistein on testosterone (T) secretion by isolated Leydig cells in roosters. Genistein (5-50 microM) inhibited (p<0.05) in vitro basal and LH-stimulated T secretion by Leydig cells in a dose dependent manner. No significant effect of lavendustin C (inhibitor of PTK, a non-phytoestrogen) on the T production was observed. In conclusion, genistein, present in commercial poultry feeds, may influence testicular steroidogenesis but its effect on reproductive performance of roosters requires further examinations.  相似文献   

6.
An intratesticular site of action has been proposed for the ability of estradiol (E2) to suppress testosterone secretion. Because testicular testosterone and E2 secretion as well as E2 receptors change during development, a physiologic role for E2 is possible. The present experiments compared the testes from 12-day-old and adult rats for the capacity of in vivo estradiol treatment to change in vitro androgen secretion in response to luteinizing hormone (LH) and dibutyryl cyclic AMP (Bt2cAMP). After 5 days in vivo treatment, in vitro responsiveness was estimated by radioimmunoassay (RIA) measurement of androgen secretion elicited by various doses of NIAMDD-LH-24 or 1.0 mM Bt2cAMP. Five days of E2 alone (500 ng/g BW s.c. once daily) markedly inhibited basal, LH-stimulated and Bt2cAMP-stimulated androgen production at both ages. Similar treatment of infant rats with LH (100 ng NIAMDD-LH-24/g BW) caused an increase in basal and LH-stimulated androgen secretion in vitro, but had no effect on the response to Bt2cAMP. The same pretreatment of adults with LH had no effect on basal, but inhibited LH- or Bt2cAMP-stimulated androgen secretion. Combined treatment of infants with E2 and LH for 5 days had no effect on basal or maximally stimulated androgen production; the in vitro response to submaximal stimulation with LH was significantly inhibited. Combined E2/LH treatment of adults significantly decreased the basal production of androgens and the response to LH or Bt2cAMP. These results suggest a major difference between the response to E2 of the Leydig cells from the rats of the two ages tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A single i.p. injection of either cisplatin or bleomycin affects the testosterone production by the Leydig cells in mature rats. It is noteworthy that on day 30 after treatment, a complete recovery of Leydig cell function is found in bleomycin-treated rats whereas in cisplatin-injected animals, 25-48% decreases of testosterone synthesis are still observed, respectively, under basal and LH-stimulated conditions. Together with the germ cell destruction, the low testosterone levels probably contribute to the sterility in cisplatin-treated rats.  相似文献   

8.
The present study examined the effects of cytochalasin B on various steps in the luteinizing hormone (LH)-stimulated increase in testosterone synthesis by collagenase-dispersed interstitial cells of adult rat testis. Cytochalasin B at a concentration range of 0.1–50 μM inhibited the LH-stimulated increase in testosterone synthesis in a dose-dependent manner. Both intracellular and medium (released) testosterone levels were reduced, thus indicating that the decrease was not due to the accumulation of testosterone inside the cell as a result of cytochalasin B treatment. Cytochalasin B also inhibited the 8-bromocyclic AMP and pregnenolone-stimulated testosterone synthesis in a similar dose-dependent manner. Cytochalasin B at the two higher doses (10 and 50 μM) also inhibited the LH-stimulated generation of cyclic AMP by interstitial cells. However, this drug had no effect on basal testosterone synthesis except at the highest concentration added.Previous studies on adrenocorticotropic hormone (ACTH)- and LH-stimulated increase in glucocorticoid and testosterone synthesis in adrenal and Leydig cells, respectively, demonstrated that cytochalasin B or anti-actin inhibited the transport of cholesterol into mitochondria. The present studies suggest that cytochalasin B inhibits at least two additional steps in the LH-stimulated increase in testosterone synthesis: (1) the generation of cyclic AMP at the level of the plasma membrane, and (2) the conversion of pregnenolone to the testosterone at the level of the smooth endoplasmic reticulum. It remains to be established whether these are direct effects of cytochalasin B, or whether they are mediated by disruption of microfilaments by cytochalasin B.  相似文献   

9.
In mature rat Leydig cells, the testosterone output (24 ng/10(6) Leydig cells/4hrs.) is increased 10 fold by LH; the addition of serum from either control or castrated or hypophysectomized rams inhibits (60%) the LH-stimulated testosterone production. Similarly, the incubation of immature rat Leydig cells with sera from hypophysectomized patients leads to a diminution (70 and 30% respectively) of both basal (0.98 ng) and LH stimulated (3.44 ng) testosterone biosynthesis. These data suggest the existence of an LH inhibitor (or inhibitors) in blood from ram and human; in addition, this substance is not only of testicular origin and is not an LH-related molecule.  相似文献   

10.
The effect of hCG and Arginine-Vasopressin (AVP) on testosterone production by purified mouse Leydig cells was examined under dynamic conditions in a perifusion system. A rapid and dose-dependent increase in testosterone release was induced by a 5 min exposure of the cells to increasing concentrations of hCG (0.01 to 1 ng/ml). The testosterone response to hCG was Gaussian in distribution with a peak value by 100 min. A 12 h pretreatment of Leydig cells with 10(-5) M AVP enhanced testosterone accumulation in the perfusate under basal conditions, but markedly reduced the hCG-stimulated testosterone production. The basal and hCG-stimulated testosterone secretion profiles by freshly isolated Leydig cells were, however, unaffected by the continuous presence of the same dose of AVP. These results support the finding that AVP acts directly on Leydig cells. They support the hypothesis of a possible role of neurohypophysial peptides on reproductive functions in the mouse by modulating steroidogenesis at the testicular level.  相似文献   

11.
We investigated the effect of retinoids on the development of Sertoli, germ, and Leydig cells using 3-day culture of testes from fetuses 14.5 and 18.5 days post-conception (dpc) and from neonates 3 days postpartum (dpp). Addition of 10(-6) M and 3.10(-8) M retinoic acid (RA) caused a dose-dependent disruption of the seminiferous cords in 14.5-day-old fetal testes, without any change in the 5-bromo-2'-deoxyuridine (BrdU) labeling index of the Sertoli cells. RA caused no disorganization of older testes, but it did cause hyperplasia of the Sertoli cells in 3-dpp testes. Fragmentation of the Sertoli cell DNA was not detected in control or RA-treated testes at any age studied. The cAMP produced in response to FSH was significantly decreased in RA-treated testes for all studied ages. Both 10(-6) M and 3.10(-8) M RA dramatically reduced the number of gonocytes per 14.5-dpc testis. This resulted from a high increase in apoptosis, which greatly exceeded the slight increase of mitosis. RA caused no change in the number of gonocytes in testes explanted on 18.5 dpc (the quiescent period), whereas it increased this number in testes explanted on 3 dpp (i.e., when gonocyte mitosis and apoptosis resume). Lastly, RA and retinol (RE) reduced both basal and acute LH-stimulated testosterone secretion by 14.5-dpc testis explants, without change in the number of 3beta-hydroxysteroid dehydrogenase-positive cells per testis. Retinoids had no effect on basal or LH-stimulated testosterone production by older testes. In conclusion, RE and RA are potential regulators of the development of the testis and act mainly negatively during fetal life and positively during the neonatal period on the parameters we have studied.  相似文献   

12.
Summary This study examines the effects of cell purity and incubation conditions on testosterone production by rat testis Leydig cells in short-term primary culture. Both basal and luteinizing hormone (LH)-stimulated testosterone production were affected by the purity of the cell preparation, i.e. as the purity of the cell preparation was increased the amount of testosterone produced per Leydig cell was also found to increase. The stimulation ratio of testosterone production, calculated as the secretion of testosterone in the presence of LH (100 ng/ml) divided by the basal secretion of testosterone, increased with the increase in plating density (20 000 to 200 000 cells per well). This pattern of change was independent of the vessel and volume of incubation. In terms of the absolute amount of testosterone produced, increasing the plating density led to a decrease in the amount of steroid produced both basally and in response to LH. Composition of the incubation medium also had an effect on testosterone production; phenol red and sodium bicarbonate exerted negative effects. At all temperatures studied (4°, 24°, 34°, and 37° C), LH increased testosterone production and the degree of stimulation increased with temperature. We conclude that cell purity and incubation conditions markedly affect rat Leydig cell steroidogenesis in vitro. Furthermore, the manner in which the results are presented can affect their interpretation.  相似文献   

13.
The release of arachidonic acid by luteinizing hormone (LH) and the effects of inhibiting phospholipase A2 (PLA2) in vivo and in vitro on LH stimulated steroidogenesis in rat testis Leydig cells has been investigated. It was found that arachidonic acid is rapidly incorporated into phospholipids and is released within 1 min after addition of LH. The effects of treating adult rats with dexamethasone and human chorionic gonadotropin (hCG) in vivo on steroidogenesis and prostaglandin synthesis in Leydig cells isolated 6 h later were determined. It was found that hCG caused a marked increase in prostaglandin F2 alpha formation which was inhibited by treatment with dexamethasone. LH-stimulated testosterone production was inhibited in the hCG treated rats and dexamethasone caused a further decrease. Treatment with dexamethasone alone also caused a decrease in the response to LH. HCG, but not dexamethasone, had similar inhibitory effects on LH-stimulated cyclic AMP production. Similarly, the PLA2 inhibitors quinacrine, dexamethasone and corticosterone, added to the Leydig cells in vitro, inhibited LH-stimulated testosterone production but not cyclic AMP production. 11-Dehydrocorticosterone also inhibited LH-stimulated testosterone production, but higher concentrations were required to give 50% inhibition compared to corticosterone (50 and 25 microM, respectively). Ring A-reduced metabolites of corticosterone and progesterone were also found to inhibit LH-stimulated steroidogenesis. The results obtained in this and previous studies are consistent with the activation of PLA2, (either directly by LH and/or via cyclic AMP), which results in the release of arachidonic acid and the formation of leukotrienes, which stimulate steroidogenesis in the Leydig cell. This study also indicates that corticosteroids and their metabolites may exert inhibitory effects at other sites in the steroidogenic pathways, in addition to PLA2.  相似文献   

14.
Hypophysectomy of immature rats results after 5 days in a loss of LH responsiveness of Leydig cells. LH responsiveness can be partly maintained by treatment with FSH for 5 days. When estradiol benzoate was administered together with FSH to hypophysectomized rats the maintenance of LH responsiveness was not observed. The loss in LH responsiveness after hypophysectomy in terms of testosterone production could not be explained by either a change in the amount of Leydig cells present in the Leydig cell preparation or to a higher conversion of testosterone. The LH-stimulated cAMP production in cells from hypophysectomized rats was very low compared to cells from intact rats. There was no difference between cAMP production of Leydig cells from untreated, FSH-treated or FSH plus estradiol benzoate treated hypophysectomized rats. During the first 2 days after hypophysectomy LH responsiveness in both untreated and FSH-treated rats showed a comparable decrease. From day 2 after hypophysectomy LH responsiveness remained at a constant level in cells from rats treated with FSH, but declined further in cells from untreated rats. A single injection of estradiol benzoate to hypophysectomized rats treated with FSH counteracted the effect of FSH on LH responsiveness, but only when estradiol was administered at that time after hypophysectomy, when the effect of FSH on LH responsiveness was clear.  相似文献   

15.
The mechanism involved in the inhibitory actions of chronic corticosterone treatment on Leydig cell steroidogenesis was studied in adult Wistar rats. Rats were treated with corticosterone-21-acetate (2 mg/100 g body weight, i.m., twice daily) for 15 days and another set of rats was treated with corticosterone plus ovine luteinizing hormone (oLH) (100 microg/kg body weight, s.c., daily) for 15 days. Chronic treatment with corticosterone increased serum corticosterone but decreased serum LH, testosterone, estradiol and testicular interstitial fluid (TIF) testosterone and estradiol concentrations. Administration of LH with corticosterone partially prevented the decrease in serum and TIF testosterone and estradiol. Leydig cell LH receptor number, basal and LH-stimulated cAMP production were diminished by corticosterone treatment which remained at control level in the corticosterone plus LH treated rats. Activities of steroidogenic enzymes, 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were significantly decreased in corticosterone treated rats. LH plus corticosterone treatment did not affect 3beta-HSD activity but decreased 17beta-HSD activity, indicating a direct inhibitory effect of excess corticosterone on Leydig cell testosterone synthesis. The indirect effect of corticosterone, thus, assume to be mediated through lower LH which regulates the activity of 3beta-HSD. Basal, LH and cAMP-stimulated testosterone production by Leydig cells of corticosterone and corticosterone plus LH treated rats were decreased compared to control suggesting the deleterious effect of excess corticosterone on LH signal transduction and thus steroidogenesis.  相似文献   

16.
A Leydig cell culture system has been used to study the in vitro modulation by luteinizing hormone (LH) of steroidogenesis in Leydig cells isolated from mice and immature rats. Mouse Leydig cells precultured for 24 h in the presence of increasing concentrations of LH (1 ng-1 microgram/ml) showed a dose-dependent decrease of the maximal LH-stimulated testosterone production. After pretreatment with 1 microgram LH/ml, maximal LH-stimulated testosterone production. After production in the presence of excess 20 alpha-hydroxycholesterol (a cholesterol side-chain cleavage substrate) were reduced to approx. 50% of control values. The possible site of action of LH is probably prior to pregnenolone, because testosterone production in the presence of excess pregnenolone was not affected by the LH pretreatment. Immature rat Leydig cells showed no decrease of maximal steroid production after 24 h culture in the presence of 1 microgram LH/ml. These results indicate that the regulation of the cholesterol side-chain cleavage activity during long-term LH action is different in mouse and rat Leydig cells. The properties of the cholesterol side-chain cleavage enzyme in mouse and rat Leydig cells were further investigated with different hydroxylated cholesterol derivatives as substrates. Steroid production by mouse Leydig cells in the presence of (22R)-22 hydroxycholesterol was similar as in the presence of LH. In contrast, steroidogenesis in rat Leydig cells in the presence of (22R)-22 hydroxycholesterol was at least 10-fold higher than in the presence of LH. It is concluded that the cholesterol side-chain cleaving enzyme in the mouse Leydig cell operates at its maximal capacity during short-term LH stimulation and can be inhibited after long-term LH action, whereas in the rat Leydig cell only a fraction of the potential activity is used during short-term LH stimulation, which is not affected during long-term LH action.  相似文献   

17.
The present study was undertaken to understand the role of galanin on testosterone secretion. Leydig cells from adult (60-80 days old) and immature (21-30 days old) rat testis were incubated with galanin (100 nM), galantide (100 nM) and Human Chorionic Gonadotropin (hCG, 25 I.U.) alone or in combinations and testosterone release was measured. It was observed that in adults, galanin failed to alter the basal testosterone release from the dispersed Leydig cells but potentiated the hCG induced testosterone release significantly. While galantide, prevented this galanin potentiating effect, but it did not alter the hCG alone induced testosterone release. On the other hand, the Leydig cells obtained from immature male rats were sensitive to hCG alone but not to galanin or galantide, both of which failed to alter the hCG induced testosterone release from these cells. Based on these results it can be postulated that galanin's role at the level of the male gonad is age dependent since its potentiating effects on hCG induced testosterone release were visible only in the adult and not in the immature male rats.  相似文献   

18.
Thymus extracts obtained from 15-day-old rats were fractionated through molecular sieve chromatography, and the fractions assayed in vitro by changes produced in the testosterone secretion of Leydig cells obtained from adult rat testes. Fractions corresponding to 27-28000 mol wt of the thymus extract diminish the testosterone secretion of Leydig cells stimulated with hCG. No changes in the basal testosterone secretion were produced by the presence of the thymus fractions. The inhibitory effect is dose related and persists during 180 min of incubation. Fractions of the same mol wt obtained from liver, heart and spleen do not modify the testosterone secretion of Leydig cells. The inhibitory activity of the thymus factor disappears after heat or trypsin treatment. Further fractioning in preparative flat bed electrofocusing makes manifest that the inhibitory activity is focused at pH 4.7. The data demonstrate the existence in rat thymus of a factor, probably of protein nature, which modifies the in vitro hCG response of a testis cell suspension.  相似文献   

19.
Nicotine and cotinine inhibit steroidogenesis in mouse Leydig cells   总被引:2,自引:0,他引:2  
Cigarette smoking alters plasma testosterone concentrations in men. The objectives of this study were to determine if nicotine and cotinine, two alkaloid products of cigarettes, affect luteinizing hormone(LH)-stimulated steroidogenesis in isolated adult mouse Leydig cells. Leydig cells from adult Swiss-Webster mice were isolated by linear density gradient and incubated (95% O2, 5% CO2) in minimum essential medium at 37 C for 3 hours with LH (10 ng) and with or without nicotine or cotinine (10(-5)-10(-7) M). Both nicotine and cotinine produced dose response inhibition (P less than 0.05) of LH-stimulated testosterone production (50-70%). The addition of 8-bromo-3',5'-cyclic monophosphate (cAMP, 500 uM) stimulated steroidogenesis comparable to LH in the absence of the alkaloids, but both nicotine and cotinine significantly (P less than 0.05) reduced testosterone production in response to cAMP, suggesting that the alkaloids inhibit testosterone production in response to LH distal to the formation of cAMP. In MEM without calcium, LH-stimulated testosterone synthesis was decreased, and neither nicotine nor cotinine significantly affected steroidogenesis. The addition of a calcium ionophore in MEM with normal calcium content enhanced (P less than 0.05) the inhibitory effects of nicotine and cotinine on LH-responsive steroidogenesis. A calcium channel blocking agent, verapamil, at 10uM significantly (P less than 0.05) reversed the inhibition of LH-stimulated testosterone production produced by both alkaloids when incubated in the medium with a normal calcium concentration. These results suggest that nicotine and cotinine either affect intracellular calcium content or block the effects of calcium on steroidogenesis in mouse Leydig cells.  相似文献   

20.
Plasma testosterone levels before and after a single injection of hCG were significantly lower in 24-month old rats than 60--90 day old animals (p less than 0.001). Even with repeated hCG administration for three weeks, plasma testosterone levels of old rats could not be restored to levels present in unstimulated young rats. In response to in vitro LH and 8-bromo-cyclic AMP stimulation, purified young Leydig cells produced significantly higher amounts of testosterone than Leydig cells from old rats. Maximal testosterone formation of the young Leydig cells in response to LH was 42.0 +/- 6.88 ng/10(6) cells, while cells from old rats produced only 16.8 +/- 3.69 ng/10(6) cells (p less than 0.01). However, the dose of LH at which one half maximal response (ED50) occurred was 0.1 mIU/ml for young Leydig cells and 0.05 mIU/ml for old Leydig cells. Basal and 1.0 mIU LH-stimulated cyclic AMP formation were comparable in both groups, but cyclic AMP formation in response to 10 mIU of LH was significantly less in the old rats (p less than 0.05). Present results demonstrate impaired steroidogenic capacity of old rats both in vivo and in vitro. Decreased testosterone response in old rats most likely is the consequence of understimulation of Leydig cells by gonadotropin; however, there appear to be additional intrinsic defects in old Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号