首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was conducted to study the range of TDZ-induced morphogenetic responses displayed by foliar explants of Kalanchoe pinnata with or without an epiphyllous bud and to assess their possible auxin mediation by using potent anti-auxin TIBA. Each epiphyllous bud developed into a healthy plantlet when cultured in vitro without nutrient/hormonal supplements. The bud on 10−6 M TDZ-treated leaf disc produced a compact, dwarf and rootless plantlet having achlorophyllous leaves with increased number of marginal notches. TDZ also caused a significant enlargement of the leaf disc as well as induced an organized hypertrophic growth at a specific site, with either effect being more pronounced in discs without an epiphyllous bud. Treatment with 10−4 M TIBA completely checked the plantlet growth. In combined dispensations, the TDZ-induced responses were modified by the anti-auxin TIBA in more than one way. Whereas it caused a complete reversal of hypertrophic growth on leaf discs and partially restored pigmentation of plantlet leaves, it could not annul the leaf disc enlargement. The diverse morphogenetic modulations were tissue and response specific. A complete reversal of TDZ-induced leaf disc hypertrophy by TIBA indicated an auxin mediation, whereas a complete non-reversal of the induced leaf disc enlargement pointed to the non-involvement of auxin, for the respective responses. The latter response could probably be manifested through cytokinin-activity of TDZ, while still others may not be interpreted exclusively through either one of the two hormonal options.  相似文献   

2.
Arabidopsis is a species that naturally displays the rosette form. Therefore, elucidation of the factors, which control basal leaf development, is of particular interest. Most evidence points that auxins and gibberellins are important in the control of rosette leaf development. In this paper, we report on a regimen that disrupts the normal rosette growth in Arabidopsis and induces internodal growth, which we have termed unbasal. The growth conditions are: (1) seed germination in the presence of 2,3,5-triiodobenzoic acid (TIBA); (2) transfer of the seedlings to a medium containing exogenous auxin (NAA) and GA3; (3) transfer of the seedlings to a GA3-only medium for all subsequent growth. Under these conditions, auxin and GA interact to induce internode elongation. Polar auxin transport appears to have a temporal effect on this synergistic interaction. In this regimen, GA increases auxin activity in the basal portions of the stem. Cross sectional morphology of the elongated internodes between two rosette leaves in an un-basal plant was similar to that seen for the pin1 Arabidopsis mutation.  相似文献   

3.
In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild‐type leaf primordia, the miR160‐targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160‐targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160‐targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.  相似文献   

4.
Conductimetric study of the effects of three auxins on a storage tissue. The change of conductivity of calibrated disks of potato tuber tissue was measured after a 6 h immersion in a mixed aqueous solution of 1 × 10?3M auxin and 0.2 M mannitol, or pure auxin, or mannitol, of the same concentrations; then measured anew after a l h immersion in 0.1 M KCI. The auxins used were: β-indolyl-acetic acid (AIA), α-naphtyl-acetic acid (ANA) and β-naphtoxyacetic acid (ANOX). A final higher conductivity was observed, the effect increasing from AIA to ANA and ANOX. The physiological significance of the results is discussed.  相似文献   

5.
The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.  相似文献   

6.
Leaf adaxial–abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial–abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin‐associated marker gene WUSCHEL‐RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial–abaxial polarity. How middle domain and margins function in the process is discussed.  相似文献   

7.
8.
9.
The role of NtDCN1 gene in organogenesis in the culture of tobacco (Nicotiana tabacum L.) somatic tissues was studied. This gene is specifically expressed in tobacco microspores induced for somatic embryogenesis. This gene knockout resulted in a disturbance of formation and development of embyoids from microspores. In leaf disks and calli derived from tobacco lines with active and inactivated NtDCN1 gene, we studied induction of shoots and roots. A comparative analysis of tobacco line morphogenetic responses in vitro showed that NtDCN1 gene inactivation enhanced shoot formation and suppressed rhizogenesis, whereas this gene reactivation returned organogenesis processes to control level. Difference between lines was manifested only at a definite ratio between exogenous hormones supplied. The involvement of NtDCN1 gene in line responses to exogenous auxin is discussed. The results obtained permit a supposition that the NtDCN1 gene is critical for regulation not only somatic embryogenesis but also organogenesis.  相似文献   

10.
Hao Chen  Liming Xiong 《Planta》2009,229(6):1303-1310
The phytohormone auxin regulates many aspects of plant growth and development. Auxin often acts distantly from the site of its biosynthesis and this long-distance-transported auxin is well known to play a critical role in eliciting physiological responses including regulating root development. Auxin can be produced in roots, yet the function of locally synthesized auxin in root growth is unclear. The major auxin in plants, indole 3-acetic acid (IAA), is mainly synthesized through tryptophan (Trp)-dependent pathways that require pyridoxal phosphate (an active form of vitamin B6)-dependent enzymes. We previously reported that the Arabidopsis vitamin B6 biosynthesis mutant pdx1 has stunted root growth although the underlying cause is unknown. Here we showed that the pdx1 root is deficient in auxin biosynthesis. By reciprocal grafting of pdx1 and the wild type, we demonstrated that the stunted root growth in pdx1 is caused by a locally generated signal(s) in roots. To test whether auxin might be one such signal, the auxin responsive DR5::GUS reporter was introduced into the mutant. The DR5::GUS activity in pdx1 root tips was greatly reduced compared with that in the wild type although the auxin response was unaltered. pdx1 also suppresses the root hair growth defects in the auxin overproduction mutant yucca. These data indicate that pdx1 is impaired in Trp-dependent auxin biosynthesis, which may contribute to the short-root phenotype of pdx1. We suggest that locally synthesized auxin may play a critical role in postembryonic root growth.  相似文献   

11.
Studies on the role of RNA synthesis in auxin induction of cell enlargement   总被引:4,自引:2,他引:2  
Nooden LD 《Plant physiology》1968,43(2):140-150
Selective inhibitors were used to study the connection between nucleic acid synthesis and indoleacetic acid (IAA) induction of cell enlargement. Actinomycin D (act D) and azaguanine (azaG) almost completely inhibit IAA-induced growth in aged artichoke tuber disks when they are added simultaneously with IAA. In contrast, when they are added 24 hours after the hormone, these inhibitors have little or no effect on the induced growth which continues for 48 hours or more with little or no inhibition. Inhibitors of protein synthesis still stop growth when applied 24 hours after the IAA, thus protein synthesis and presumably supporting metabolism are still essential.

In corn coleoptile sections auxin-induced growth did not show any pronounced tendency to become less sensitive to act D as the IAA treatment progressed. Act D did not completely inhibit the response to IAA unless the sections were pretreated with act D for 6 hours. In contrast to act D, cordycepin produced almost complete inhibition of IAA-induced growth when added with the IAA.

Although IAA has a very large and very rapid stimulatory effect (within 10 min) on incorporation of 32P-orthophosphate into RNA in disks, it did not cause a detectable change in the base composition of the RNA synthesized. Furthermore, the promotive effect could be accounted for through increased uptake of the 32P. That much of the RNA synthesis in these tissues is not necessary for auxin action is indicated by the results with fluorouracil (FU). FU strongly inhibits RNA synthesis, probably acting preferentially on ribosomal RNA synthesis, without inhibiting auxin-induced growth in the disks or coleoptile sections. FU also strongly inhibited respiration in auxin-treated disks indicating that the large promotion of respiration by auxin likewise may not be entirely necessary for growth.

At least in the artichoke disks, RNA synthesis is required for auxin induction of cell enlargement and not for cell enlargement itself.

The possible relationships of auxin induction of cell enlargement and RNA synthesis are discussed.

  相似文献   

12.
13.
A promotion of expansion of etiolated bean leaf disks by ultraviolet (UV) radiation was confirmed. The optimum conditions for the effeet were found to be 5 seconds UV exposure followed by 24 hours of incubation at 25°C and pH 6.2. Macerations and sections of the treated and control disks indicated that the basis of the response was an increase in the number of cells in the UV treated disks. Experiments with indolebutyric acid (IBA) and p-chlorophenoxyisobutyric acid (PCIB) indicated that the UV apparently acted to reduce a superoptimal endogenous auxin level to an optimum level which resulted in promotion of the expansion.  相似文献   

14.
Preliminary studies establishing relationships between leaf plastochron index and Epilobium hirsutum L. shoot growth provide a method for rigorous selection of plants utilized in experiments designed to test the working hypothesis that endogenous auxin gradient interactions are factors of phyllotactic control in this species. Application of N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, to one of the youngest bijugate primordia on the shoot meristem results in increased growth of the treated primordium. Fasciation between the treated primordium and one of the next primordia to be initiated alters relative vertical spacing of primordia. Angular shifts between subsequent primordia result in spiral transformation of Epilobium bijugate phyllotaxy. Application of α-4-chlorophenoxyisobutyric acid (CPIB), an auxin antagonist, to one of the youngest bijugate primordia on the shoot meristem results in decreased growth of the treated primordium that alters both radial and vertical spacing of primordia. This is followed by angular shifts between subsequent primordia resulting in spiral transformation of the bijugate phyllotaxy. Changes in the growth parameters of NPA- and CPIB-treated shoots are similar. Relative plastochron rates of radial and vertical shoot growth of induced spiral shoots are about half those of lanolin paste control shoots, as are the plastochrons and relative plastochron rates of leaf elongation. Treated shoot meristems have eccentricities of 0.5 as compared to bijugate control meristem eccentricities of 0.7. No significant difference is apparent between basal transverse areas of treated and control shoot meristems. The relative chronological rates of growth of treated shoots are not significantly different from those rates of control shoots. Spiral transformation results from changes in relative positions of leaf primordia insertion on the shoot meristem, not from changes in growth of treated shoots. These changes are accompanied by an increased rate of leaf initiation on a more circular shoot meristem. Existing theoretical models of phyllotaxy are discussed in relation to these chemically induced changes of Epilobium leaf arrangement.  相似文献   

15.
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature‐sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub‐2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor‐like kinase gene whose functions in leaf development have not been demonstrated. The sub‐2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB‐mediated developmental stage‐specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.  相似文献   

16.
The ranges over which the germination of conidia of Alternaria longipes was > 50% were 10–35 °C on agar and 15–30 °C on tobacco leaf disks. Germination was optimal at 22.5 °C; so was germ-tube growth, reaching c. 300 and 102 μm on agar and leaf disks respectively after 12 h. On average, 27% more conidia germinated and germ-tubes were 62% longer on disks from leaves washed for 5 min under running water than on disks from unwashed leaves. At controlled saturation deficits germination after 8 h at 1.1 and 2.3 mb was 42.3 and 9.3% respectively and the rate of germ-tube growth was < 0.8 μm/h, compared with 94.4% and 8.3 μm/h in standing water. These results, together with some field data, suggests that germination in the field is largely restricted to periods when free moisture is present on leaves. In Malawi, leaf temperatures and the duration of dew at night were adequate to allow germination and penetration in the absence of rain. Pollen, when applied with the inoculum, had little effect on the number of germinated conidia, but caused a c. tenfold increase in the number of successful penetrations.  相似文献   

17.
18.
The lateral margins of immature primary leaf blades of Phaseolus vulgaris L. cv. ‘Pinto’ curve up and in toward the midrib when auxin is applied to the leaf. The leaves are most sensitive to auxin shortly after they first unfold and leaves which have grown to about 60 % or more of their ultimate area no longer give this hyponastic response. The response is specific for auxins and is inhibited by the anti-auxins, trans-cinnamic acid and para-chlorophenoxyisobutyric acid. Ethylene and ethylene-generating compounds failed to induce hyponasty, suggesting the response is due to a positive growth promotion by auxin. Measurements of the distance between the lateral margins of the leaf at its maximum width were used to provide quantitative estimates of the degree of hyponasty. Between 2 and 4 hr after auxin application a direct proportionality was found between the amount of curvature and the logarithm of the indoleacetic acid concentration over the range of 10−6 to 10−3 m. The relative sensitivity of the leaves to different auxins was qualitatively similar to that observed in many straight-growth bioassays. Similar responses were obtained when auxin was applied by a carborundum wounding procedure. Potential applications of this auxin bioassay for investigations of the role of auxin in the normal plagiotropic growth behavior of leaf lamina and of the role of auxin in the initiation of various plant diseases are suggested.  相似文献   

19.
Elongation of the Arabidopsis hypocotyl pushes the shoot‐producing meristem out of the soil by rapid expansion of cells already present in the embryo. This elongation process is shown here to be impaired by as much as 35% in mutants lacking ABCB19, an ATP‐binding cassette membrane protein required for polar auxin transport, during a limited time of fast growth in dim white light beginning 2.5 days after germination. The discovery of high ectopic expression of a cyclin B1;1‐based reporter of mitosis throughout abcb19 hypocotyls without an equivalent effect on mitosis prompted investigations of the endoreplication variant of the cell cycle. Flow cytometry performed on nuclei isolated from upper (growing) regions of 3‐day‐old hypocotyls showed ploidy levels to be lower in abcb19 mutants compared with wild type. CCS52A2 messenger RNA encoding a nuclear protein that promotes a shift from mitosis to endoreplication was lower in abcb19 hypocotyls, and fluorescence microscopy showed the CCS52A2 protein to be lower in the nuclei of abcb19 hypocotyls compared with wild type. Providing abcb19 seedlings with nanomolar auxin rescued their low CCS52A2 levels, endocycle defects, aberrant cyclin B1;1 expression, and growth rate defect. The abcb19‐like growth rate of ccs52a2 mutants was not rescued by auxin, placing CCS52A2 after ABCB19‐dependent polar auxin transport in a pathway responsible for a component of ploidy‐related hypocotyl growth. A ccs52A2 mutation did not affect the level or pattern of cyclin B1;1 expression, indicating that CCS52A2 does not mediate the effect of auxin on cyclin B1;1.  相似文献   

20.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号