首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borrelia burgdorferi, the pathogen of Lyme disease, cycles in nature through Ixodes ticks and mammalian hosts. At least five Complement Regulator-Acquiring Surface Proteins (BbCRASPs) are produced by B. burgdorferi, which are thought to assist spirochetes in host immune evasion. Recent studies established that BbCRASP-2 is preferentially expressed in mammals, and elicits robust antibody response in infected hosts, including humans. We show that BbCRASP-2 is ubiquitously expressed in diverse murine tissues, but not in ticks, reinforcing a role of BbCRASP-2 in conferring B. burgdorferi defense against persistent host immune threats, such as complement. BbCRASP-2 immunization, however, fails to protect mice from B. burgdorferi infection and does not modify disease, as reflected by the development of arthritis. An infectious BbCRASP-2 mutant was generated, therefore, to examine the precise role of the gene product in spirochete infectivity. Similar to wild type B. burgdorferi, BbCRASP-2 mutants remain insensitive to complement-mediated killing in vitro, retain full murine infectivity and induce arthritis. Quantitative RT-PCR assessment indicates that survivability of BbCRASP-2-deficient B. burgdorferi is not due to altered expression of other BbCRASPs. Together, these results suggest that the function of a selectively expressed B. burgdorferi gene, BbCRASP-2, is not essential for complement resistance or infectivity in the murine host.  相似文献   

2.
To assess the contribution of TLR signaling in the host response to Borrelia burgdorferi, mice deficient in the common TLR adaptor protein, myeloid differentiation factor 88 (MyD88), were infected with B. burgdorferi. MyD88-deficient mice harbored extremely high levels of B. burgdorferi in tissues when compared with wild-type littermates and greater amounts of spirochetes in tissues than TLR2-deficient mice. These findings suggest that, in addition to TLR2, other MyD88-dependent pathways play a significant role in the host defense to B. burgdorferi. MyD88(-/-) mice maintained the ability to produce Abs directed against B. burgdorferi. Partial clearance of spirochetes was evident in long term infection studies and immune sera from MyD88-deficient mice were able to protect naive mice from infection with B. burgdorferi. Thus, the acquired immune response appeared to be functional in MyD88(-/-) mice, and the inability to control spirochete numbers was due to a failure of cells involved in innate defenses. Although macrophages from MyD88(-/-) mice responded poorly to Borrelia sonicate in vitro, MyD88(-/-) mice still developed an inflammatory arthritis after infection with B. burgdorferi characterized by an influx of neutrophils and mononuclear cells. The findings presented here point to a dichotomy between the recruitment of inflammatory cells to tissue and an inability of these cells to kill localized spirochetes.  相似文献   

3.
The tick-borne bacterium Borrelia burgdorferi has over 20 different circular and linear plasmids. Some B. burgdorferi plasmids are readily lost during in vitro culture or genetic manipulation. Linear plasmid 25, which is often lost in laboratory strains, is required for the infection of mice. Strains missing linear plasmid 25 (lp25(-)) are able to infect mice if the BBE22 gene on lp25 is provided on a shuttle vector. In this study, we examined the role of lp25 and BBE22 in tick infections. We tested the hypothesis that complementation with BBE22 in spirochetes lacking lp25 would restore the ability of spirochetes to infect ticks. A natural tick infection cycle was performed by feeding larvae on mice injected with the parental, lp25(-), or lp25(-) BBE22-complemented spirochete strains. In addition, larvae and nymphs were artificially infected with different strains to study tick infections independent of mouse infections. B. burgdorferi missing lp25 was significantly impaired in its ability to infect larval and nymphal ticks. When an lp25(-) strain was complemented with BBE22, the ability to infect ticks was partially restored. Complementation with BBE22 allowed spirochetes lacking lp25 to establish short-term infections in ticks, but in most cases the infection prevalence was lower than that of the wild-type strain. In addition, the number of infected ticks decreased over time, suggesting that another gene(s) on lp25 is required for long-term persistence in ticks and completion of a natural infection cycle.  相似文献   

4.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

5.
Borrelia burgdorferi, the Lyme disease pathogen, employs several immune-evasive strategies to survive in mammals. Unlike mice, major reservoir hosts for B. burgdorferi, rabbits are considered to be nonpermissive hosts for persistent infection. Antigenic variation of the VlsE molecule is a probable evasion strategy known to function in mice. The invariable region 6 (IR6) and carboxyl-terminal domain (Ct) of VlsE elicit dominant antibody responses that are not protective, perhaps to function as decoy epitopes that protect the spirochete. We sought to determine if either of these characteristics of VlsE differed in rabbit infection, contributing to its reputed nonpermissiveness. VlsE recombination was observed in rabbits that were given inoculations with either cultured or host-adapted spirochetes. Early observations showed a lack of anti-C6 (a peptide encompassing the IR6 region) response in most rabbits, so the anti-Ct and anti-C6 responses were monitored for 98 weeks. Anti-C6 antibody appeared as late as 20 weeks postinoculation, and the anti-Ct response, evident within the first 2 weeks, oscillated for prolonged periods of time. These observations, together with the recovery of cultivable spirochetes from tissue of one animal at 98 weeks postinoculation, challenge the notion that the rabbit cannot harbour a long-term B. burgdorferi infection.  相似文献   

6.
Borrelia burgdorferi lipoproteins activate inflammatory cells through Toll-like receptor 2 (TLR2), suggesting that TLR2 could play a pivotal role in the host response to B. burgdorferi. TLR2 does play a critical role in host defense, as infected TLR2(-/-) mice harbored up to 100-fold more spirochetes in tissues than did TLR2(+/+) littermates. Spirochetes persisted at extremely elevated levels in TLR2-deficient mice for at least 8 wk following infection. Infected TLR2(-/-) mice developed normal Borrelia-specific Ab responses, as measured by quantity of Borrelia-specific Ig isotypes, the kinetics of class switching to IgG, and the complexity of the Ags recognized. These findings indicate that the failure to control spirochete levels in tissues is not due to an impaired acquired immune response. While macrophages from TLR2(-/-) mice were not responsive to lipoproteins, they did respond to nonlipoprotein components of sonicated spirochetes. These TLR2-independent responses could play a role during the inflammatory response to B. burgdorferi, as infected TLR2(-/-) mice developed greater ankle swelling than wild-type littermates. Thus, while TLR2-dependent signaling pathways play a major role in the innate host defense to B. burgdorferi, both inflammatory responses and the development of the acquired humoral response can occur in the absence of TLR2.  相似文献   

7.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

8.
The Lyme disease spirochete, Borrelia burgdorferi, causes a persistent infection in the vertebrate host even though infected animals mount an active immune response against the spirochete. One strategy used by the spirochete to evade vertebrate host immunity is to vary the structure and expression of outer membrane antigens. The vlsE locus represents the best-studied example of antigenic variation in B. burgdorferi. During vertebrate host infection, recombination between the active vlsE locus and silent, partial vlsE copies leads to gene conversion events and the generation of novel alleles at the expression site. In the present study, we followed a population of B. burgdorferi organisms moving through vertebrate host and tick stages to complete one transmission cycle. The major goal of the study was to determine if the vlsE locus was subject to different selective pressure and/or recombination frequency at different stages of the spirochete's life cycle. We report here that the vlsE genetic diversity generated within the rodent host was maintained through the larval and nymphal tick stages. Therefore, naturally infected ticks are likely to transmit spirochete populations with multiple vlsE alleles into naive vertebrate hosts. Although vlsE genetic diversity in mice was maintained through tick stages, the dominant vlsE alleles were different between tick stages as well as between individual ticks. We propose that population-level bottlenecks experienced by spirochetes, especially during the larval-to-nymphal molt, are responsible for individual infected ticks harboring different dominant vlsE alleles. Although vlsE genetic diversity is maintained through tick stages, the VlsE protein is unlikely to be of functional importance in the vector, because the protein was expressed by very few (<1%) bacteria in the vector.  相似文献   

9.
A hybridoma cell line formed by the fusion of the P3x63-Ag8.653 myeloma cell line with splenocytes from BALB/c mice immunized with Borrelia burgdorferi produced an IgM monoclonal antibody (mAb-11G1) with kappa-light chains which detected an antigenic determinant in a major spirochetal protein of m.w. approximately 31,000, also known as outer surface protein A (OSP-A). Apparent saturation was reached in approximately 35 min with 34 ng of mAb-11G1 binding to 5 X 10(7) spirochetes giving an estimated 4.8 X 10(2) IgM molecules per spirochete and thus a minimum of 480 binding sites per organism. Enzymatic digestion studies suggest that the antigenic determinant to mAb-11G1 is contained within the peptide chain of OSP-A as binding could be eliminated by treatment of the spirochetes with proteinase K, Pronase and pepsin (100 to 200 micrograms/ml of enzyme) but not by trypsin or bromelain treatment. Periodate oxidation as well as mixed and endoglycosidase treatment of the spirochetes did not alter the binding of mAb-11G1. Two-dimensional gel electrophoresis of whole spirochetal cell lysates disclosed that OSP-A is a heterogeneously charged basic protein with an apparent isoelectric point range from 8.5 to 9.0. Amino acid analysis of OSP-A showed a 10% lysine component which could provide the basic nature to the protein. OSP-A with the intact antigenic determinant for mAb-11G1 can be found in the urine of hamsters experimentally infected with B. burgdorferi.  相似文献   

10.
To determine whether prior exposure to Nearctic Ixodes vector ticks protects native reservoir mice from tick-borne infection by Lyme disease spirochetes, we compared their infectivities for white-footed mice and laboratory mice that had been repeatedly infested by noninfected deer ticks. Nymphal ticks readily engorged on tick-exposed laboratory mice, but their feeding success on white-footed mice progressively declined. Tick-borne spirochetes readily infected previously tick-infested mice. Thus, prior infestation by Nearctic ticks does not protect sympatric reservoir mice or Palearctic laboratory mice from infection by sympatric tick-borne spirochetes.  相似文献   

11.
Without antibiotic treatment, the Lyme-disease-causing bacterium, Borrelia burgdorferi can be cultured from the peripheral blood of human patients nearly 6 wk post-tick bite. To determine if Lyme disease spirochetes can be transmitted from a spirochetemic donor mouse to a naive recipient during blood transfusion, blood taken from immunocompetent infected mice was transfused into either immunodeficient (SCID) mice, inbred immunocompetent animals (C3H/HeJ), or outbred mice. Nine of 19 (47.7%) immunodeficient mice, 7 of 15 (46.8%) inbred immunocompetent mice, and 6 of 10 (60.0%) outbred mice became infected with B. burgdorferi after transfusion. Our results indicate that it is possible to acquire B. burgdoferi infection via transfused blood in a mouse model of Lyme borreliosis.  相似文献   

12.
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.  相似文献   

13.
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.  相似文献   

14.
Borrelia burgdorferi spirochetes are an infectious agent of Lyme borreliosis. The aim of our studies was to investigate the fate of engulfed B. burgdorferi cells in L-929 mouse fibroblasts and to observe development of intracellular infection in vitro after 2 and 48 h. Electron microscopic studies reveal consecutive stages of B. burgdorferi spirochetes penetration to mouse fibroblasts in vitro. It has been observed, as a first step attachment and engulfment of spirochetes followed by formation of vacuoles. After 48 hours of infection, vacuoles of fibroblastic cells have been seen full of B. burgdorferi bacteria and latter they have been released from infected cells to extracellular space. It can be the evidence that B. burgdorferi multiply intracellulary.  相似文献   

15.
To determine whether blackbirds (Turdus merula), the most abundant and most abundantly tick-infested ecotonal bird of Central Europe, may contribute to the transmission of the Lyme disease spirochete (Borrelia burgdorferi), we compared the infectivity to ticks of naturally as well as experimentally infected blackbirds and rodents. European blackbirds experience intense exposure to Ixodes ricinus ticks and to the pathogens that they transmit. In nature, subadult I. ricinus ticks found feeding on these birds generally contain no spirochetes, although infection is universal in those found on black-striped mice (Apodemus agrarius). Those found on yellow-necked mice (A. flavicollis) are less frequently infected. Ticks lose infection in the course of feeding on blackbirds and fail to infect them. Subadult I. ricinus ticks readily feed on blackbirds, black-striped mice, and jirds (Meriones unguiculatus), but engorge less fully on the bird than on the rodents. Although birds may burden human health by establishing new infestations of I. ricinus ticks, our observations indicate that particular birds may benefit health by locally diminishing transmission of the Lyme disease spirochete.  相似文献   

16.
To investigate the role of Toll-like receptor 2 (TLR2)-mediated signaling in host innate defense and development of Lyme disease, the pathogenicity of Borrelia burgdorferi sensu stricto clinical isolates representing two distinct genotypes (RST1 and RST3A) was assessed in TLR2(-/-) C3H/HeJ mice. All TLR2(-/-) mice infected with a B. burgdorferi RST1 isolate developed severe arthritis. The numbers of spirochetes in heart, joint and ear biopsy specimens were significantly higher in TLR2(-/-) mice than in wild-type mice similarly infected as determined by real-time quantitative polymerase chain reaction. Interestingly, despite the higher spirochete levels in heart tissues, milder carditis was observed in TLR2(-/-) than in wild-type mice infected with this RST1 isolate (P=0.02). By contrast, no positive cultures were obtained from any of the blood and tissue specimens from TLR2(-/-) mice inoculated with two RST3A clinical isolates. The data suggest that there is impaired host innate defense against infection and TLR2-independent killing of B. burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice.  相似文献   

17.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

18.
Larvae of the trombiculid mite Neotrombicula autumnalis were collected at 18 sites in and around Bonn, Germany, to be screened for infection with Borrelia burgdorferi s.l. by means of PCR. Questing larvae numbering 1380 were derived from the vegetation and 634 feeding ones were removed from 100 trapped micromammals including voles, mice, shrews and hedgehogs. In a laboratory infection experiment, a further 305 host-seeking larvae from the field were transferred onto Borrelia-positive mice and gerbils, and examined for spirochete infection at various intervals after repletion. In three cases borrelial DNA could be amplified from the mites: (1) from a larva feeding on a wild-caught greater white-toothed shrew (Crocidura russula), (2) from a pool of four larvae feeding on a B. garinii-positive laboratory mouse, and (3) from a nymph that had fed on a B. afzelii-positive laboratory gerbil as a larva. In the first case, borrelial species determination by DNA hybridization of the PCR product was only possible with a B. burgdorferi complex-specific probe but not with a species-specific one. In the second case, probing showed the same borrelial genospecies (B. garinii) as the laboratory host had been infected with. In the latter case, however, DNA hybridization demonstrated B. valaisiana while the laboratory host had been infected with B. afzelii. Subsequent DNA sequencing confirmed much higher similarity of the PCR product to B. valaisiana than to B. afzelii indicating an infection of the mite prior to feeding on the laboratory host. The negligible percentage of positive mites found in this study suggests that either the uptake of borrelial cells by feeding trombiculids is an extremely rare event or that ingested spirochetes are rapidly digested. On the other hand, the results imply a possible transstadial and transovarial transmission of borreliae once they are established in their trombiculid host. However, unless the transmission of borreliae to a given host is demonstrated, a final statement on the vector competence of trombiculid mites is not possible.  相似文献   

19.
Rrp1 is the sole c-di-GMP-producing protein (diguanylate cyclase) of Borrelia burgdorferi. To test the hypothesis that Rrp1 regulates critical processes involved in the transmission of spirochetes between ticks and mammals, an rrp1 deletion mutant (B31-Δrrp1) and a strain that constitutively produces elevated levels of Rrp1 (B31-OV) were constructed. The strains were assessed for progression through the enzootic cycle using an Ixodes tick/C3H-HeJ mouse model and tick immersion feeding methods. B31-Δrrp1 infected mice as efficiently as wild type but had altered motility, decreased chemotactic responses to N-acetylglucosamine (NAG) and attenuated ability to disseminate or colonize distal organs. While this strain infected mice, it was not able to survive in ticks. In contrast, B31-OV displayed normal motility patterns and chemotactic responses but was non-infectious in mice. Using immersion feeding techniques, we demonstrate that B31-OV can establish a population in ticks and survive exposure to a natural bloodmeal. The results presented here indicate Rrp1, and by extension, c-di-GMP, are not strictly required for murine infection, but are required for the successful establishment of a productive population of B. burgdorferi in ticks. These analyses provide significant new insight into the genetic regulatory mechanisms of the Lyme disease spirochetes.  相似文献   

20.
The sequence of the gene encoding major outer membrane protein (MOMP) P2 of antigenic variants of non-encapsulated Haemophilus influenzae isolated from persistently infected chronic bronchitis patients was analysed. Antigenic drift was shown to result from single base changes in the P2 gene, all generating amino acid changes in the surface-exposed loops of MOMP P2, predominantly in loop 6. Similar single base changes were observed in H. influenzae persistently present in a subcutaneous cage implanted in rabbits, as well as in a spontaneous H. influenzae mutant that had survived MOMP P2 specific monoclonal-antibody-dependent bactericidal killing in vitro. We hypothesize that accumulation of point mutations under the selection pressure of immunity is a mechanism of antigenic drift of a surface-exposed protein during persistent H. influenzae infection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号