首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用SNP进行遗传病致病基因搜寻的策略   总被引:7,自引:0,他引:7  
刘万清  贺林 《生命科学》1999,11(5):196-200
SNP是一类基于单碱基变异引起的DNA多态性,被遗传学界称为第三代遗传标记。由于SNP的诸多优点,如位点丰富和与DNA芯片等技术上的结合,它将对人类致病基因的搜寻工作起到革命性的作用。本文综合了目前SNP领域的一些进展,对这一新的标记系统在人类遗传病研究中的应用策略进行了初步概括。  相似文献   

2.
3.
《遗传学报》2020,47(6):289-299
The intestinal epithelium is one of the most rapidly renewing tissues, which is fueled by stem cells at the base of the crypts. Strategies of genetic lineage tracing and organoids, which capture major features of original tissues, are powerful avenues for exploring the biology of intestinal stem cells in vivo and in vitro,respectively. The combination of intestinal organoideculturing system and genetic modification approaches provides an attractive platform to uncover the mechanism of colorectal cancer and genetic disorders in the human minigut. Here, we will provide a comprehensive overview of studies on intestinal epithelium and intestinal stem cells. We will also review the applications of organoids and genetic markers in intestinal research studies. Furthermore, we will discuss the advantages and drawbacks of organoids as disease models compared with mice models and cell lines.  相似文献   

4.
The International HapMap Project and the arrival of technologies that type more than 100,000 SNPs in a single experiment have made genome-wide single nucleotide polymorphism (GW-SNP) assay a realistic endeavor. This has sparked considerable debate regarding the promise of GW-SNP typing to identify genetic association in disease. As has already been shown, this approach has the potential to localize common genetic variation underlying disease risk. The data provided from this technology also lends itself to several other lines of investigation; autozygosity mapping in consanguineous families and outbred populations, direct detection of structural variation, admixture analysis, and other population genetic approaches. In this review we will discuss the potential uses and practical application of GW-SNP typing including those above and beyond simple association testing.  相似文献   

5.
Breakthroughs in genetics over the last decade have radically advanced our understanding of the etiological basis of Parkinson''s disease (PD). Although much research remains to be done, the main genetic causes of this neurodegenerative disorder are now partially unraveled, allowing us to feel more confident that our knowledge about the genetic architecture of PD will continue to increase exponentially. How and when these discoveries will be introduced into general clinical practice, however, remains uncertain. In this review, we provide a general summary of the progress in the genetics of PD and discuss how this knowledge will contribute to the diagnosis and clinical management of patients with, or at risk of this disorder.  相似文献   

6.
Hardy J 《Neuron》2010,68(2):201-206
In this review I outline the arguments as to whether we should consider Parkinson disease one or more than one entity and discuss genetic findings from Mendelian and whole-genome association analysis in that context. I discuss what the demonstration of disease spread implies for our analysis of the genetic and epidemiologic risk factors for disease and outline the surprising fact that we now have genetically identified on the order of half our risk for developing the disease.  相似文献   

7.
Dengue virus (DENV) is an emerging mosquito-borne pathogen that produces significant morbidity worldwide resulting in an estimated 50–100 million infections annually. DENV causes a spectrum of illness ranging from inapparent infection to life-threatening hemorrhagic fever and shock. The varied DENV disease outcome is determined by complex interactions between immunopathologic, viral, and human genetic factors. This review summarizes these interactions with a focus on human genetic determinants of DENV susceptibility, including human leukocyte antigens, blood type, and single nucleotide polymorphisms in immune response genes that have been associated with DENV disease. We also discuss other factors related to DENV outcome including viral genetic determinants, age, ethnicity, and nutritional status as they relate to DENV susceptibility. We emphasize the need for functional genetics studies to complement association-based data and we call for controlled study designs and standard clinical DENV disease definitions that will strengthen conclusions based on human genetic DENV studies.  相似文献   

8.
冠心病易感基因的筛选   总被引:4,自引:0,他引:4  
作为一种多基因疾病 ,冠心病是由遗传和环境因素共同作用的结果 ,在许多国家是主要的死因之一。由于目前冠心病的发病机制尚不十分清楚 ,阻碍了其易感基因的定位分离研究。冠心病遗传因素的确定 ,显然将有助于其易感基因定位分离研究。迄今除发现了个别的相关基因外 ,绝大部分的遗传易感性相关基因尚未被发现 ,其研究仍然存在许多问题。为此 ,本文就其易感基因可能的研究策略和方法作一综述。这些方法同样也适用于诸如中风、外周血管阻塞、高血压、心力衰竭等心血管疾病以及其它多基因疾病  相似文献   

9.
全基因组关联分析的进展与反思   总被引:1,自引:0,他引:1  
Tu X  Shi LS  Wang F  Wang Q 《生理科学进展》2010,41(2):87-94
全基因组关联分析(genomewide association study,GWAS)是应用人类基因组中数以百万计的单核苷酸多态性(single nucleotide polymorphism,SNP)为标记进行病例-对照关联分析,以期发现影响复杂性疾病发生的遗传特征的一种新策略。近年来,随着人类基因组计划和基因组单倍体图谱计划的实施,人们已通过GWAS方法发现并鉴定了大量与人类性状或复杂性疾病关联的遗传变异,为进一步了解控制人类复杂性疾病发生的遗传特征提供了重要的线索。然而,由于造成复杂性疾病/性状的因素较多,而且GWAS研究系统较为复杂,因此目前GWAS本身亦存在诸多的问题。本文将从研究方式、研究对象、遗传标记,以及统计分析等方面,探讨GWAS的研究现状以及存在的潜在问题,并展望GWAS今后的发展方向。  相似文献   

10.
Heart failure is a leading cause of hospitalization worldwide. No major significant improvements in prognosis have been achieved for heart failure over the last several decades despite advances in disease management. Heart failure itself represents a final common endpoint for several disease entities, including hypertension and coronary artery disease. On a molecular level, certain biochemical features remain common to failing myocardium. Among these are alterations in the beta-adrenergic receptor (beta-AR) signaling cascade. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies for management of heart failure via genetic manipulation of beta-AR signaling including the targeted inhibition of the beta-AR kinase (betaARK1 or GRK2). In this review, we will discuss the beta-AR signaling changes that accompany heart failure as well as corresponding therapeutic strategies. We will then review the evidence from transgenic mouse work supporting the use of beta-AR manipulation in the failing heart and more recent in vivo applications of gene therapy directed at reversing or preventing heart failure.  相似文献   

11.
Benign bladder pathology resulting from prostatic hypertrophy or other causes is a significant problem associated with ageing in humans. This condition is characterized by increased bladder mass, decreased urinary flow rate, decreased compliance, and these and other changes in bladder function often subject patients to increased risk of urinary tract infection. While the physiologic attributes of benign bladder pathology have been extensively described in humans and in various animal model systems, the biochemical and molecular genetic bases for that pathology have only recently been investigated in detail. Studies demonstrate that mitochondrial energy production and utilization are severely impaired in bladder smooth muscle during benign bladder disease, and to a large extent this realization has provided a rational basis for understanding the characteristic alterations in urinary flow and compliance in bladder tissue. Recent investigations targeting the detailed molecular basis for impaired mitochondrial function in the disease have shown that performance of the organellar genetic system, and to a large extent that of relevant portions of the nuclear genetic system as well, is severely aberrant in bladder tissue. In this article, we discuss the physiologic aspects of benign bladder disease, summarize biochemical evidence for the altered mitochondrial energy metabolism that appears to underlie bladder pathology, review the structure and function of the mitochondrial genetic system, and discuss molecular genetic studies of that system which have begun to provide a mechanistic explanation for the biochemical and physiological abnormalities that characterize the disease. We also discuss areas for further research which will be critically important in increasing our understanding of the detailed causes of benign bladder pathology.  相似文献   

12.
Genetically engineered animal models have been and will continue to be invaluable for exploring the basic mechanisms involved in the aging process as well as in extending our understanding of diseases found to be more prevalent in the older human population. Continued development of such in vivo systems will allow scientists to further dissect the role genetic and environmental factors play in aging and in age-related disease states and to enhance our understanding of these processes. In this article we discuss techniques involved in the development of such models and review some examples of laboratory mouse strains that have been used to study either normal aging or select diseases associated with aging.  相似文献   

13.
Advances in swine biomedical model genomics   总被引:1,自引:0,他引:1  
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.  相似文献   

14.
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.  相似文献   

15.
Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease. In this paper, we will discuss the effects of the various types of sequence variations encountered and review current knowledge regarding the genotype-phenotype relationship, especially in patients with acyl-CoA dehydrogenase deficiencies where sufficient material exists for a meaningful discussion. Because mis-sense sequence variations are prevalent in these diseases, we will discuss the implications of these types of sequence variations on the processing and folding of mis-sense variant proteins. As the prevalent mis-sense variant K304E MCAD protein has been studied intensively, the investigations on biogenesis, stability and kinetic properties for this variant enzyme will be discussed in detail and used as a paradigm for the study of other mis-sense variant proteins. We conclude that the total effect of mis-sense sequence variations may comprise an invariable--sequence variation specific--effect on the catalytic parameters and a conditional effect, which is dependent on cellular, physiological and genetic factors other than the sequence variation itself.  相似文献   

16.
Congenital heart disease likely results from a complex mixture of environmental and genetic factors. Recent work has elucidated rare single gene mutations that cause a variety of cardiac defects, but the etiologies of more common disease remains unknown. Here, we review the known genetic causes of cardiac malformations and discuss future approaches for addressing sporadic congenital heart disease as a complex trait.  相似文献   

17.
Tumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered. In this review, we will summarize these more recent findings and highlight major gaps in our current knowledge. We will also discuss future research strategies that may allow us to better understand the sometimes subtle and intricate effects of TNF family molecules during malaria infection.  相似文献   

18.
The influence of the microenvironment on the malignant phenotype   总被引:14,自引:0,他引:14  
Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.  相似文献   

19.
Tendons and ligaments (T/L) are very similar fibrous tissues that respectively connect muscle to bone and bone to bone. They are comprised of fibroblasts that produce large amounts of extra-cellular matrix, resulting in a dense and hypocellular structure. The complex molecular organization of T/L, together with high water content, are responsible for their viscoelastic properties, hence insuring their mechanical function. We will first review recent work on tendon embryology and discuss ligament formation, which has been less documented. We will next summarize our current knowledge of T/L molecular architecture, alterations of which are a major cause for disease. We will finally focus on T/L repair after injury and on genetic diseases responsible for T/L defects.  相似文献   

20.
Cholesterol is an essential component of both the peripheral and central nervous systems of mammals. Over the last decade, evidence has accumulated that disturbances in cholesterol metabolism are associated with the development of various neurological conditions. In addition to genetically defined defects in cholesterol synthesis, which will be covered in another review in this Thematic Series, defects in cholesterol metabolism (cerebrotendinous xanthomatosis) and intracellular transport (Niemann Pick Syndrome) lead to neurological disease. A subform of hereditary spastic paresis (type SPG5) and Huntington''s disease are neurological diseases with mutations in genes that are of importance for cholesterol metabolism. Neurodegeneration is generally associated with disturbances in cholesterol metabolism, and presence of the E4 isoform of the cholesterol transporter apolipoprotein E as well as hypercholesterolemia are important risk factors for development of Alzheimer''s disease. In the present review, we discuss the links between genetic disturbances in cholesterol metabolism and the above neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号