首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.  相似文献   

2.
The generation of new host cell lines for the production of foreign proteins can be achieved by cell engineering. This approach can be used to enhance the cell's ability to produce proteins that are properly processed and secreted at elevated levels and consequently can increase the overall productivity of an expression system. One potential target for cell engineering is the modification of the cell's protein folding capacity. The appropriate folding, assembly, localization and secretion of newly synthesized proteins is dependent upon the action of a group of proteins known as molecular chaperones. Improving the host cell's chaperoning capacity might increase the yield of properly folded recombinant proteins by preventing the formation of insoluble aggregates. Another potentially beneficial cell engineering goal is the inhibition of physiological cell death. The productivity of genetically engineered cells is dependent upon the maintenance of high levels of cell viability throughout the bioprocess period. Fluctuations in a cell's environment can trigger a deliberate form of cell death known as apoptosis. The proteins that mediate this self-destruction are currently being characterized. Regulating the expression of these death genes by cellular engineering could limit the loss of productivity that results from the physiological death of the recombinant cell line.  相似文献   

3.
Lignocellulose is an abundant and renewable feedstock for the production of such commodities as fuels and chemicals, provided that a low-cost technology can be developed to overcome its recalcitrance. Organisms that hydrolyze the sugar polymers in lignocellulose to produce a valuable product at a high rate would significantly reduce the costs of current conversion technologies. To develop yeasts, such as Saccharomyces cerevisiae, for such consolidated bioprocessing (CBP), a secreted heterologous cellulolytic enzyme system must be engineered into it. While considerable progress has been made in this regard, the secretion of cellobiohydrolases (CBHs) at levels required for crystalline cellulose hydrolysis has remained elusive until recently. Recent results suggest the existence of a compatibility factor for the expression of foreign genes in a host and that expression of some genes or their products exerted varying degrees of stress on the cell. The secretion machinery of yeasts is a multi-step process and each step is directed and regulated by several proteins, providing a vast array of targets that can be manipulated to enhance heterologous protein secretion. This review assesses the current state of the field with respect to CBH secretion in yeast and the options for enhancing yeast secretion capacity through strain engineering.  相似文献   

4.
Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.  相似文献   

5.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

6.
Non-conventional yeasts as hosts for heterologous protein production.   总被引:4,自引:0,他引:4  
Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.  相似文献   

7.
Metabolic load and heterologous gene expression   总被引:18,自引:0,他引:18  
The expression of a foreign protein(s) in a recombinant host cell or organism often utilizes a significant amount of the host cell's resources, removing those resources away from host cell metabolism and placing a metabolic load (metabolic drain, metabolic burden) on the host. As a consequence of the imposed metabolic load, the biochemistry and physiology of the host may be dramatically altered. The numerous physiological changes that may occur often lowers the amount of the target foreign protein that is produced and eventually recovered from the recombinant organism. In this review the physiological changes to host cells, the causes of the phenomenon of metabolic load, and several strategies to avoid some of the problems associated with metabolic load are elaborated and discussed.  相似文献   

8.
Type III secretion system (T3SS) plays important roles in bacteria and host cell interactions by specifically translocating type III effectors into the cytoplasm of the host cells. The N-terminal amino acid sequences of the bacterial type III effectors determine their specific secretion via type III secretion conduits. It is still unclear as to how the N-terminal sequences guide this specificity. In this work, the amino acid composition, secondary structure, and solvent accessibility in the N-termini of type III and non-type III secreted proteins were compared and contrasted. A high-efficacy mathematical model based on these joint features was developed to distinguish the type III proteins from the non-type III ones. The results indicate that secondary structure and solvent accessibility may make important contribution to the specific recognition of type III secretion signals. Analysis also showed that the joint feature of the N-terminal 6th–10th amino acids are especially important for guiding specific type III secretion. Furthermore, a genome-wide screening was performed to predict Salmonella type III secreted proteins, and 8 new candidates were experimentally validated. Interestingly, type III secretion signals were also predicted in gram-positive bacteria and yeasts. Experimental validation showed that two candidates from yeast can indeed be secreted through Salmonella type III secretion conduit. This research provides the first line of direct evidence that secondary structure and solvent accessibility contain important features for guiding specific type III secretion. The new software based on these joint features ensures a high accuracy (general cross-validation sensitivity of ∼96% at a specificity of ∼98%) in silico identification of new type III secreted proteins, which may facilitate our understanding about the specificity of type III secretion and the evolution of type III secreted proteins.  相似文献   

9.
This theoretical work predicts the optimal system design for the steady-state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single-stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two-stage cascades.  相似文献   

10.
Lysogenic bacteriophages are considered as a major player for the introduction of foreign genes into bacterial strains. At the time of introduction foreign genes do not fit well into the translation system of the recipient host bacterium as they tend to retain the characteristics of the donor bacterium from which they have been transferred. Consequently foreign genes are poorly transcribed at the early phase of their evolution within the host bacterium. This is largely due to the difference in the codon usage pattern between the horizontally transferred genes and the host bacterium. In this study we present detailed analyses of various parameters of the codon usages such as codon adaptation index (CAI), mean difference (MD) of the relative adaptiveness, synonymous substitution rate (SSR) of six different phage encoded toxin genes (cholera toxin, shiga toxin, diphtheria toxin, neurotoxin C1, enterotoxin type A and cytotoxin), and proposed conceptual relationship between the evolutionary time of acquisition of the foreign genes and the selected set of parameters of the codon usage. On the basis of the observed data we hypothesize that CAI, MD and SSR of the phage encoded toxin genes are correlated with the evolutionary time of their acquisition, and have developed a novel approach based on the analyses of these parameters, which can be used to predict the evolutionary time of their acquisition by the corresponding host bacterium.  相似文献   

11.
Although manipulation of the endoplasmic reticulum (ER) folding environment in the yeast Saccharomyces cerevisiae has been shown to increase the secretory productivity of recombinant proteins, the cellular interactions and processes of native enzymes and chaperones such as protein disulfide isomerase (PDI) are still unclear. Previously, we reported that overexpression of the ER chaperone PDI enabled up to a 3-fold increase in secretion levels of the Pyrococcus furiosus beta-glucosidase in the yeast S. cerevisiae. This result was surprising since beta-glucosidase contains only one cysteine per monomer and no disulfide bonds. Two possible mechanisms were proposed: PDI either forms a transient disulfide bond with the lone cysteine residue of the nascent beta-glucosidase during the folding and assembly process or acts as a chaperone to aid in proper folding. To discern between the two mechanisms, the single cysteine residue was mutated to serine, and the secretion of the two protein variants was determined. The serine mutant still showed increased secretion in vivo when PDI levels were elevated. When the folding bottleneck is removed by increasing expression temperatures to 37 degrees C rather than 30 degrees C, PDI no longer has an improvement on secretion. These results suggest that, unexpectedly, PDI acts in a chaperone-like capacity or possibly cooperates with the cell's folding or degradation mechanisms regardless of whether the protein is redox-active.  相似文献   

12.
Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-kappaB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection.  相似文献   

13.
Type IV secretion systems are used by many gram-negative bacteria for the translocation of macromolecules (proteins, DNA, or DNA-protein complexes) across the cell envelope. Among them are many pathogens for which type IV secretion systems are essential virulence factors. Type IV secretion systems comprise 8-12 conserved proteins, which assemble into a complex spanning the inner and the outer membrane, and many assemble extracellular appendages, such as pili, which initiate contact with host and recipient cells followed by substrate translocation. VirB8 is an essential assembly factor for all type IV secretion systems. Biochemical, cell biological, genetic, and yeast two-hybrid analyses showed that VirB8 undergoes multiple interactions with other type IV secretion system components and that it directs polar assembly of the membrane-spanning complex in the model organism Agrobacterium tumefaciens. The availability of the VirB8 X-ray structure has enabled a detailed structure-function analysis, which identified sites for the binding of VirB4 and VirB10 and for self-interaction. Due to its multiple interactions, VirB8 is an excellent model for the analysis of assembly factors of multiprotein complexes. In addition, VirB8 is a possible target for drugs that target its protein-protein interactions, which would disarm bacteria by depriving them of their essential virulence functions.  相似文献   

14.
The TBF-1 is an 11.9-kDa fruiting body specific protein of the Ascomycetes hypogeous fungus Tuber borchii Vittad. found in aqueous extract and the hyphal cell wall. The tbf-1 gene codes a 12-amino acid N-terminal stretch not present in mature protein. This sequence does not match with any homologous signal sequences stored in data banks. To investigate the role of the N-terminus in TBF-1 localization, cDNA was expressed in Saccharomyces cerevisiae under the control of the 3-phosphoglycerate kinase promoter. Like Tuber, yeast also produces and secretes TBF-1 and the foreign protein binds with the cell wall. A signalless mutant protein was constructed; this DeltaTBF-1 was expressed but not exported by yeast. The secretion of TBF-1 was also suppressed using the sec18(ts) yeast mutant strain grown at nonpermissive temperature as host. Thus we demonstrated that the N-terminal 12-amino acid stretch is a noncanonical signal peptide that leads the TBF-1 toward the classical secretory pathway in yeast.  相似文献   

15.
CCK-secreting WE rat medullary thyroid carcinoma cell line resembles other calcitonin-producing (C-cell) lines in that calcium, cAMP, or agents which raise cAMP, dexamethasone, and beta-adrenergic agents all stimulate peptide secretion. Unlike other C-cell lines, the WE cells respond similarly to IBMX (3-isobutyl-1-methyl-xanthine, a phosphodiesterase inhibitor) in the presence and absence of forskolin, implying that these cells secrete substances that raise cAMP levels, whose effect is accentuated by IBMX. Both CGRP and neurotensin, peptides that may be secreted by these cells, caused a small, but significant, increase in CCK secretion. It is possible that these or other secreted substances that activate adenylate cyclase are responsible for the cell's high rate of CCK secretion. Their high rate of CCK synthesis and their regulated secretion suggest that these cells will be a good model for studies of CCK expression, biosynthesis, and processing.  相似文献   

16.
Li  Fangfang  Xu  Xiongbiao  Li  Zhenghe  Wang  Yaqin  Zhou  Xueping 《中国病毒学》2020,35(1):120-123
正Dear Editor,The geminiviruses are small single-stranded plant DNA viruses belonging to the family Geminiviridae, which cause serious diseases in many economically important  相似文献   

17.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

18.
The settling tomite stage of the apostome Hyalophysa chattoni secretes a phoretic cyst wall composed of chitin, mucopolysaccharides, and protein. Within 1 1/2 h after settling, an electron-dense proteinaceous cyst layer (the outer layer) is formed from secretions originating at the base of the kineties and from the thick pellicular layer between the kineties. The inner cyst layer, composed primarily of chitin (acidic and neutral polysaccharides are also present), is secreted across the entire cell surface. Cyst wall formation is completed within 6 h. The fine structure of endocyst secretion resembles stages in the secretion of chitin by fungi, yeasts, and arthropods. A proteinaceous attachment peduncle is secreted to anchor the cell to a shrimp host and is formed by the release of electrondense dense secretory bodies from the cell's ventral surface.  相似文献   

19.
The genes for two new P-type ATPases, PMR1 and PMR2, have been identified in yeast. A comparison of the deduced sequences of the PMR proteins with other known ion pumps showed that both proteins are very similar to Ca2+ ATPases. PMR1 is identical to SSC1, a gene previously identified by its effect on secretion of some foreign proteins from yeast. Proteins secreted from pmr1 mutants lack the outer chain glycosylation that normally results from passage through the Golgi. Loss of PMR1 function suppresses the lethality of ypt1-1, a mutation that blocks the secretion pathway. These data suggest that PMR1 functions as a Ca2+ pump affecting transit through the secretory pathway.  相似文献   

20.
The optimisation and scale-up of a specific protein production process have to take into account cultivation conditions as well as cell physiology of growth and the influence of foreign protein expression on host cell metabolism. The ability of Zygosaccharomyces bailii to tolerate high sugar concentrations as well as high temperatures and acidic environments renders this "non-conventional" yeast suitable for the development of biotechnological processes like heterologous protein production. This work addresses the production of human interleukin-1beta by a recombinant Z. bailii strain. We found that the heterologous protein production causes some modifications of the Z. bailii carbon metabolism, leading to a reduced biomass yield. The other important factor is the dependence of the recombinant IL-1beta production/secretion on the growth rate. Among the cultivation strategies studied, the most appropriate in terms of production and productivity was the fed-batch mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号