首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cAMP-dependent protein kinase, derived from either calf lens or bovine heart, promotes the phosphorylation of three lens plasma membrane proteins of molecular mass 28 kDa, 26 kDa and 18 kDa. Correlation of the maximal level of phosphorylation of these components with the Coomassie blue staining intensity of fractionated lens membranes suggests that the phosphorylation of the 28 kDa and 18 kDa components may be approximately stoichiometric. The protein kinase substrates could be dephosphorylated by a cardiac sarcoplasmic-reticulum-bound protein phosphatase activity. The 26 k Da component comigrated with MP26, the major lens membrane component that has been localized to the lens fiber cell junction. Treatment of phosphorylated lens membranes with chymotrypsin did not suggest that any of the three major phosphorylated components was derived from the partial proteolysis of a larger phosphoprotein. After electrophoretic separation of phosphorylated proteins, treatment with N-chlorosuccinimide confirmed that there was little similarity in the structure of the three phosphoproteins. Chymotrypsin did, however, reveal a cryptic phosphorylation site in a 22 kDa fragment that appeared to be derived from MP26. Treatment of phosphorylated membranes with reducing agents resulted in the disappearance of the 28 kDa phosphorylated component and the appearance of a new phosphorylated component of 18 kDa; neither MP26 nor the original 18 kDa component was affected by such treatment. It is not clear whether the original 18 kDa phosphoprotein, present in unreduced samples, is the same as that generated with reducing agents from the 28 kDa phosphorylated lens membrane component.  相似文献   

2.
The crystalline lens is an attractive system to study the biology of intercellular communication; however, the identity of the structural components of gap junctions in the lens has been controversial. We have cloned a novel member of the connexin family of gap junction proteins, Cx50, and have shown that it is likely to correspond to the previously described lens fiber protein MP70. The N-terminal amino acid sequence of MP70 closely matches the sequence predicted by the clone. Cx50 mRNA is detected only in the lens, among the 12 organs tested, and this distribution is indistinguishable from that of MP70 protein. A monoclonal antibody directed against MP70 and an anti-Cx50 antibody produced against a synthetic peptide identify the same proteins on western blots and produce identical patterns of immunofluorescence on frozen sections of rodent lens. We also show that expression of Cx50 in paired Xenopus oocytes induces high levels of voltage-dependent conductance. This indicates that Cx50 is a functional member of the connexin family with unique physiological properties. With the cloning of Cx50, all known participants in gap junction formation between various cell types in the lens are available for study and reconstitution in experimental systems.  相似文献   

3.
A monoclonal antibody (mcAb) that recognizes an intracellular domain of the major lens membrane protein in both chicken and bovine lenses is described. Mice were immunized with chicken lens fiber cell membranes that had been washed with 7 M urea. Hybridomas were screened by means of enzyme-linked immunosorbent assays and the molecular specificities of the mcAbs were determined using electrophoretic transfer procedures, "Westerns." One of these mcAbs, an IgG designated B2, reacted with a single band of 28,000 Mr from the chicken embryo lens (MP28) and the analogous 26,000 Mr protein in the bovine lens (MP26). Monoclonal B2 was shown to be specific for these proteins, since (a) heating in SDS caused MP26 to aggregate and reduced B2 binding to the protein band at an Mr of 26,000 in Western transfer analysis; (b) apparent dimers were bound by B2 in Western transfers; (c) soluble protein fractions from the lens contained no detectable B2 antigens; and (d) a cyanogen bromide fragment of MP26 was bound by B2. Studies with several proteases indicated that the antigenic site for B2 resides on a 2-kd, protease-sensitive region at the C-terminal end of MP26 and MP28. Evidence for B2 binding on the cytoplasmic side of the membrane comes from labeling studies done at the ultrastructural level. These studies, utilizing indirect methods with peroxidase and colloidal gold markers, clearly demonstrated that B2 labels two types of junctional profiles. In our calf lens membrane preparations after tannic acid staining, the predominant type (80%) measured 16-18 nn thick, with the second type measuring only 12-14 nm. Chick embryo lens cells that had differentiated in vitro and formed groups of lens fiber-like cells (termed lentoids), fluoresced brightly only when they had been permeabilized before labeling with B2 and a fluorochrome-conjugated antibody. This binding was concentrated at the plasma membranes of cells within the lentoids, even outside areas of cell-cell contact. Surrounding epithelioid cells were not stained. Solubilized lens cultures, examined by Westerns, displayed a single immunoreactive band, which co-migrated with MP28.  相似文献   

4.
MP70 (a 70 kDa membrane protein) is a component of the gap junctions of the young fibre cells in the lens outer cortex. In the older fibres deeper in the mammalian lens (lens nucleus), MP70 is processed to MP38 by cleavage and removal of the carboxy terminal half. It is shown here that cortical MP70, and its derivative MP64, can be phosphorylated with cAMP-dependent protein kinase. In contrast, MP38 from the lens nucleus is not phosphorylated by the enzyme. Proteolytic processing and this lens region specific phosphorylation are relevant for the future development of functional assays for lens gap junctions.  相似文献   

5.
The lens fiber-cell plasma membrane MP26 from chick, bovine, and human lenses yielded identical cyanogen bromide peptide maps, confirming the essential conservation of structure in the junction protein of vertebrate lens fiber cells. Immunoblot analyses of the cyanogen bromide peptide maps of human lens MP26 and of its age-dependent proteolytic product MP22 confirmed that MP22 is a derivative of MP26. The findings in this study are the first consistent with the positioning of the methionine residues in lens MP26 as predicted by its cDNA-derived sequence.  相似文献   

6.
Lens membranes, purified from calf lenses, have been labeled by covalent cross-linking to membrane-bound 125I-calmodulin with dithiobis(succinimidyl propionate). Electrophoretic analysis in sodium dodecyl sulfate demonstrated two major 125I-containing products of Mr = 49 000 and 36 000. That the formation of these two components was specifically inhibited by unlabeled calmodulin, or calmodulin antagonists, would indicate that the formation of these components was calmodulin-specific. The size of these two 125I-labeled components was unchanged over a range of 125I-calmodulin or dithiobis(succinimidyl propionate) concentrations indicating that they represent 1:1 complexes between 125I-calmodulin (Mr = 17 000) and Mr-32 000 and Mr-19 000 lens membrane components respectively. Although formation of both cross-linked components exhibited an absolute dependence on Mg2+, the autoradiographic intensity of these components was enhanced when Ca2+ was included with Mg2+ during the cross-linking reaction. Labeling was maximal in 10 mM MgCl2 and approximately 1 microM Ca2+. Treatment of lens membranes with chymotrypsin resulted in the cleavage of MP26 (the major lens membrane protein), with the appearance of a major proteolytic fragment of Mr = 22 000. This proteolysis was not associated with any significant change in either the size or amount of the 125I-calmodulin-labeled membrane components. These results suggest that calmodulin interacts with two membrane proteins, but not significantly with MP26, in the intact lens cell membrane. Our results indicate the need to maintain caution in interpreting direct calcium plus calmodulin effects on MP26 and lens cell junctions.  相似文献   

7.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   

8.
Phosphorylation of lens intrinsic membrane proteins by protein kinase C   总被引:2,自引:0,他引:2  
Two intrinsic proteins of bovine lens membranes with apparent relative molecular masses (Mr, app) of 26,000 and 18,000 were phosphorylated in intact membranes by protein kinase C prepared from either bovine brain or lens. The kinase preparations exhibited histone H1 phosphorylation dependent on calcium and phospholipid but not on cAMP. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the lens membranes showed a major band at Mr, app = 26,000 (identified as MP26, the main intrinsic protein of lens fiber cells), an intermediate band at Mr, app = 18,000 and several minor bands. Autoradiography of complete assay mixture containing protein kinase C, calcium, magnesium and [gamma-32P]ATP showed major bands at Mr, app = 18,000 and 26,000. Several lines of evidence indicated that the label at Mr, app = 26,000 was associated with MP26, a protein which has been found in lens junctions and which may form cell-cell channels. Treatment of the phosphorylated membranes with chymotrypsin and V8 protease cleaved the major band at Mr, app = 26,000 to fragments of Mr, app .= 22,000 and 24,000. Label was not detected in the resulting Mr, app = 22,000 peptide, but the Mr, app = 24,000 peptide was found to be labeled. Phosphoamino acid analysis of MP26 indicated that approximately 75% of the label was on phosphoserine and 25% was on phosphothreonine. No label was found on phosphotyrosine. These results differ from those reported for cAMP-dependent phosphorylation of lens proteins. Phosphorylation by protein kinase C may account for some of the labeling of MP26 detected in vivo.  相似文献   

9.
In primary monolayer cultures of dispersed neural retina cells from 13-day chick embryo, gliocytes (Müller glia cells) multiply and rapidly change into a lentoidal (lens-like) phenotype. They express lens proteins, including MP26 (a lens plasma-membrane antigen) and ultra-structurally appear to resemble lens cells. A significant aspect of this modification is that the glia-derived lentoidal cells no longer display contact-affinity for neurons but become preferentially adhesive to each other; in aggregates, they assemble into compact lentoids. A likely explanation for this change in cell affinities is that the modified gliocytes express little or no R-cognin, a retinal cell-surface antigen implicated in mutual recognition and adhesion of retina cells. Although lentoidal cells express MP26, a gap-junction component in the lens, no gap junctions could be found in the lentoids.  相似文献   

10.
Thin section electron microscopy reveals two different types of membrane interactions between the fiber cells of bovine lens. Monoclonal antibodies against lens membrane protein MP70 (Kistler et al., 1985, J. Cell Biol., 101:28-35) bound exclusively to the 16-17-nm intercellular junctions. MP70 localization was most dramatic in the lens outer cortex and strongly reduced deeper in the lens. In contrast, the 12-nm double membrane structures and single membranes were consistently unlabeled. In freeze-fracture replicas with adherent cortical fiber membranes, MP70 was immunolocalized in the junctional plaques which closely resemble the gap junctions in other tissues. MP70 is thus likely to be associated with intercellular communication in the lens.  相似文献   

11.
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.  相似文献   

12.
Calf lens fiber cells contain a population of polyribosomes that direct, at leastin vitro, the synthesis of a specific plasma membrane protein MP26. This protein may serve as a marker in terminal differentiation, since it is absent in the lens epithelium but appears in lens fiber plasma membranes. The MP26 manufacturing polyribosomes are found to be associated with a structural complex in which also the cytoskeleton and plasma membranes participate. They can be released from the complex by treatment with DNAse I. This result presumably reflects the involvement of actin in the linkage of the MP26 synthesizing polyribosomes to the cytoskeleton-membrane complex.  相似文献   

13.
A 70,000-D membrane protein (MP70), which is restricted to the eye lens fibers and is present in immunologically homologous form in many vertebrate species, has been identified. By use of anti-MP70 monoclonal antibodies for immunofluorescence microscopy and electron microscopy, this polypeptide was localized in lens membrane junctional domains. Both immunofluorescence microscopy and SDS PAGE reveal an abundance of MP70 in the lens outer cortex that coincides with a high frequency of fiber gap junctions in the same region.  相似文献   

14.
Polyclonal antisera were prepared in rabbits using both native and chymotrypsin-digested bovine lens fiber plasma membranes. MP26, the principal protein of lens fiber plasma membranes, and CT20, a chymotryptic fragment of MP26, were isolated electrophoretically and used to purify anti-MP26 and anti-CT20 activity from the respective antisera by affinity chromatography. These affinity-purified antisera were characterized by immunoreplica. Immunofluorescence microscopy localized MP26 on sections of methacrylate-embedded lenses in the lens fiber plasma membranes, but not the lens epithelium. Immunocytochemistry of isolated native or chymotrypsin-digested lens fiber plasma membranes localized both the MP26 and the CT20 only in the nonjunctional plasma membranes, with no detectable activity in the lens fiber junctions themselves. Electron microscopy revealed a second set of pentalaminar profiles, thinner by 4 nm than the lens fiber junctions, which contained demonstrable anti-MP26 and anti-CT20 activity following immunocytochemistry. These results indicate either that MP26 is not a component of the lens fiber junctions, or that significant conformational changes accompany assembly of MP26 into lens fiber junctions, resulting in the masking of MP26 antigenic determinants.  相似文献   

15.
Molecular portrait of lens gap junction protein MP70   总被引:3,自引:0,他引:3  
A 70-kDa membrane protein (MP70) is a component of the lens fiber gap junctions. Its membrane topology and its N-terminal sequence are similar to those of the connexin family of proteins. Some features of MP70 containing fiber gap junctions are, however, distinct from gap junctions in other mammalian tissues: (i) Lens connexons form crystalline arrays only after cleavage of junctional proteins in vitro. These hexagonal arrays have a periodicity of 13.6 nm which is significantly larger than the 8- 9-nm spacing of liver and heart gap junctions. (ii) Lens fiber gap junctions dissociate in low concentrations of nonionic detergent and this provides an avenue to purify MP70 directly from a membrane mixture. Isolated MP70 in the form of 17 S structures has an appearance consistent with connexon pairs. (iii) The C-terminal half of MP70 is cleaved in situ by a lens endogenous calcium-dependent protease. The processed from MP38 remains in the membrane and is abundant in the central region of the lens. A testable hypothesis for MP70 function is presented.  相似文献   

16.
A lens intercellular junction protein, MP26, is a phosphoprotein   总被引:7,自引:2,他引:5       下载免费PDF全文
The major protein present in the plasma membrane of the bovine lens fiber cell (MP26), thought to be a component of intercellular junctions, was phosphorylated in an in vivo labeling procedure. After fragments of decapsulated fetal bovine lenses were incubated with [32P]orthophosphate, membranes were isolated and analyzed by SDS PAGE and autoradiography. A number of lens membrane proteins were routinely phosphorylated under these conditions. These proteins included species at Mr 17,000 and 26,000 as well as a series at both 34,000 and 55,000. The label at Mr 26,000 appeared to be associated with MP26, since (a) boiling the membrane sample in SDS led to both an aggregation of MP26 and a loss of label at Mr 26,000, (b) the label at 26,000 was resistant to both urea and nonionic detergents, and (c) two-dimensional gels showed that a phosphorylated Mr 24,000 fragment was derived from MP26 with V8 protease. Studies with proteases also provided for a localization of most label within approximately 20 to 40 residues from the COOH-terminus of MP26. Published work indicates that the phosphorylated portion of MP26 resides on the cytoplasmic side of the membrane, and that this region of MP26 contains a number of serine residues. The same region of MP26 was labeled when isolated lens membranes were reacted with a cAMP-dependent protein kinase prepared from the bovine lens. After the in vivo labeling of lens fragments, phosphoamino acid analysis of MP26 demonstrated primarily labeled serines, with 5-10% threonines and no tyrosines. Treatments that lowered the intracellular calcium levels in the in vivo system led to a selective reduction of MP26 phosphorylation. In addition, forskolin and cAMP stimulated the phosphorylation of MP26 and other proteins in concentrated lens homogenates. These findings are of interest because MP26 appears to serve as a protein of cell-to-cell channels in the lens, perhaps as a lens gap junction protein.  相似文献   

17.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

18.
We previously described cultures of chick embryo lens cells which displayed a marked degree of differentiation. In this report, the junctions found between the lens fiber-like cells in the differentiated "lentoids" are characterized in several ways. Thin-section methods with electron microscopy first demonstrated that numerous, large junctions between lentoid cells accompanied the other differentiated features of these cells. Freeze-fracture techniques, including quantitative analysis, then revealed that (a) junctional particles were loosely arranged as is typical of fiber cells, (b) the population of individual junctional areas in culture was indistinguishable from that found in 10- to 12-day chick embryo lenses, and (c) apparent junction formation occurred during the development of the lens cells, with lacy arrays of particles being associated with fiber-like junctions. In addition, gap junctions with hexagonally packed particles, typical of lens epithelial cells, largely disappeared during the course of differentiation. Injection of tracer dyes into lentoid cells resulted in rapid intercellular movement of dye, consistent with functional cell-to-cell channels connecting lentoid cells. During the development of the lens cells in culture, as junction formation occurred, an increase of approximately eight-fold in MP28 protein was observed within the cells. These combined results indicate that (a) extensive lens fiber junctions and functional cell-to-cell channels are found between differentiated lentoid lentoid cells in vitro, (b) lens fiber junctions appear to form during the course of lens cell differentiation in culture, (c) a significant increase occurs in the putative junctional protein before the cultures are highly developed, (d) the increased levels of MP28 and junction formation may be required for the full expression of the differentiated state in the lens fiber cell, and (e) this culture system should prove to be valuable for additional experiments on lens junctions and for other studies requiring the development of lens fiber cells in vitro.  相似文献   

19.
Enterohemorrhagic Escherichia coli (EHEC) O157 strain F2, a food isolate of an outbreak, is resistant to oxidative stress, but has increased stress-sensitivity after passage through mice. The stress-sensitive variant of F2 (designated MP37) has decreased culturability, but retains membrane integrity under stress conditions, indicating that the cells enter a viable but non-culturable (VBNC) state. Proteomic analyses revealed that MP37 in the VBNC state had decreased levels of some oxidation-responsive factors (AhpCF, AceF), but it markedly increased levels of outer membrane protein W (OmpW). Because F2 expressed higher levels of some ribosome-associated proteins (RaiA, S6, Bcp) than MP37, the effect of animal passage on the induction of the VBNC state in the EHEC O157 cells might be due to ribosomal activity.  相似文献   

20.
Synthesis of MP26, the principal protein of lens fiber plasma membranes, was directed in the reticulocyte lysate system by poly A mRNA enriched from whole bovine lens RNA using oligo (dt)-cellulose chromatography. Synthesized MP26 was enriched by immune precipitation. The in vitro-synthesized MP26 had an electrophoretic mobility indistinguishable from that of the native molecule. MP26 showed a cotranslational requirement for dog pancreas microsomes in order for membrane association to occur. Microsome-associated in vitro- synthesized MP26 showed a sensitivity to digestion with chymotrypsin which was similar to the sensitivity of native MP26 in isolated lens fiber plasma membranes, indicating correct insertion of the MP26 into the microsome. Synthesis and membrane insertion of MP26 using N-formyl- [35S]methionyl tRNA as label demonstrated that no proteolytic processing or significant glycosylation accompanied membrane insertion. Chymotryptic cleavage of membrane-inserted, N-formyl-[35S]methionine- labeled MP26 resulted in loss of label, suggesting that the N-terminal of the in vitro-synthesized MP26 faces the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号