首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.5 mg/kg/day) prevented tactile hyperalgesia and attenuated cold hyperalgesia, but did not affect the response to noxious heat stimulus. A marked increase of large-sized injured primary afferent neurons, detected by ATF3 immunolabeling, was seen in lower lumbar DRGs on ipsilateral side after Ang II treatment. Subpressor dose of Ang II induced an increase of activated SGCs (detected by GFAP immunolabeling) enveloping large-diameter neurons. Our results suggested that Ang II through the AT1 receptor activation is an important regulatory factor in neuropathic pain perception and plays an important role in the injury of large-sized primary afferent neurons and activation of SGCs elicited by the CCI.  相似文献   

4.
Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24?h after culturing, but undergo major phenotypic changes at later times.  相似文献   

5.
Following peripheral nerve injury perineuronal satellite cell reaction in the corresponding spinal ganglion is observed. The mechanisms underlying the glial responses to axon injury remain unknown. In an immunocytochemical and morphometric study we investigated satellite cell and macrophage responses in the rat L4 and L5 dorsal root ganglia (DRG) during the seven days immediately after unilateral sciatic nerve crush or transection. Nerve lesion induced a significant increase of glial fibrillary acidic protein-immunoreactive (GFAP-IR) cells in the ipsilateral L4-L5 DRGs. The number of ED1-positive macrophages significantly increased as well. We found no significant differences between the increases provoked by the two types of nerve lesion, but the macrophage activation was detected earlier after nerve transection than after crush. No correlation was detected between satellite cells and macrophages reactions over the 7 day period we examined. These findings support the idea that intercellular neuron-glial diffusible signals play a major role in DRG glial cell response to peripheral nerve lesion.  相似文献   

6.
Satellite glial cells (SGCs) tightly envelop the perikarya of primary sensory neurons in peripheral ganglion and are identified by their morphology and the presence of proteins not found in ganglion neurons. These SGC-unique proteins include the inwardly rectifying K(+) channel Kir4.1, the connexin-43 (Cx43) subunit of gap junctions, the purinergic receptor P2Y4 and soluble guanylate cyclase. We also present evidence that the small-conductance Ca(2+)-activated K(+) channel SK3 is present only in SGCs and that SGCs divide following nerve injury. All the above proteins are involved, either directly or indirectly, in potassium ion (K(+)) buffering and, thus, can influence the level of neuronal excitability, which, in turn, has been associated with neuropathic pain conditions. We used in vivo RNA interference to reduce the expression of Cx43 (present only in SGCs) in the rat trigeminal ganglion and show that this results in the development of spontaneous pain behavior. The pain behavior is present only when Cx43 is reduced and returns to normal when Cx43 concentrations are restored. This finding shows that perturbation of a single SGC-specific protein is sufficient to induce pain responses and demonstrates the importance of PNS glial cell activity in the pathophysiology of neuropathic pain.  相似文献   

7.
Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia.  相似文献   

8.
In order to clarify the peripheral mechanisms of ectopic persistent pain in a tooth pulp following pulpal inflammation of an adjacent tooth, masseter muscle activity, phosphorylated extracellular signal-regulated protein kinase (pERK) and TRPV1 immunohistochemistries and satellite cell activation using glial fibrillary acidic protein (GFAP) immunohistochemistry in the trigeminal ganglion (TG) were studied in the rats with molar tooth-pulp inflammation. And, Fluorogold (FG) and DiI were also used in a neuronal tracing study to analyze if some TG neurons innervate more than one tooth pulp. Complete Freund’s adjuvant (CFA) or saline was applied into the upper first molar tooth pulp (M1) in pentobarbital-anesthetized rats, and capsaicin was applied into the upper second molar tooth pulp (M2) on day 3 after the CFA or saline application. Mean EMG activity elicited in the masseter muscle by capsaicin application to M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. The mean number of pERK-immunoreactive (IR) TG cells was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. Application of the satellite cell inhibitor fluorocitrate (FC) into TG caused a significant depression of capsaicin-induced masseter muscle activity and a significant reduction of satellite cell activation. The number of TRPV1-IR TG cells innervating M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats, and that was decreased following FC injection into TG. Furthermore, 6% of TG neurons innervating M1 and/or M2 innervated both M1 and M2. These findings suggest that satellite cell activation following tooth pulp inflammation and innervation of multiple tooth pulps by single TG neurons may be involved in the enhancement of the activity of TG neurons innervating adjacent non-inflamed teeth that also show enhancement of TRPV1 expression in TG neurons, resulting in the ectopic persistent tooth-pulp pain following pulpal inflammation of adjacent teeth.  相似文献   

9.
This study investigated the presence of cell membrane docking proteins synaptosomal‐associated protein, 25 and 23 kD (SNAP‐25 and SNAP‐23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time‐ and calcium‐dependent manner following calcium‐ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose‐dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre‐incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin‐stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP‐25 and SNAP‐23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP‐25 and/or SNAP‐23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non‐neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA.  相似文献   

10.
There is evidence that sensitization of neurons in dorsal root ganglia (DRG) may contribute to pain induced by intestinal injury. We hypothesized that obstruction-induced pain is related to changes in DRG neurons and satellite glial cells (SGCs). In this study, partial colonic obstruction was induced by ligation. The neurons projecting to the colon were traced by an injection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate into the colon wall. The electrophysiological properties of DRG neurons were determined using intracellular electrodes. Dye coupling was examined with an intracellular injection of Lucifer yellow (LY). Morphological changes in the colon and DRG were examined. Pain was assessed with von Frey hairs. Partial colonic obstruction caused the following changes. First, coupling between SGCs enveloping different neurons increased 18-fold when LY was injected into SGCs near neurons projecting to the colon. Second, neurons were not coupled to other neurons or SGCs. Third, the firing threshold of neurons projecting to the colon decreased by more than 40% (P < 0.01), and the resting potential was more positive by 4-6 mV (P < 0.05). Finally, the number of neurons displaying spontaneous spikes increased eightfold, and the number of neurons with subthreshold voltage oscillations increased over threefold. These changes are consistent with augmented neuronal excitability. The pain threshold to abdominal stimulation decreased by 70.2%. Inflammatory responses were found in the colon wall. We conclude that obstruction increased neuronal excitability, which is likely to be a major factor in the pain behavior observed. The augmented dye coupling between glial cells may contribute to the neuronal hyperexcitability.  相似文献   

11.
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.  相似文献   

12.
13.
Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal–glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10–P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-βIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and βIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and βIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal–glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain.  相似文献   

14.
Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ‐treatment the number of neurons surrounded with GFAP‐positive SGCs in dorsal root ganglia increased 4‐fold in mice and 5‐fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2‐fold in STZ‐treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target.  相似文献   

15.
16.
The bodies of primary sensory neurons and their satellite glial cells (SGCs) are limited by the basal laminae from extracellular matrix of the dorsal root ganglia (DRG). The basal laminae displayed uniform immunofluorescence staining for laminin-1 in the sections of rat intact (naive) DRG. A proximal or distal ligature of the spinal nerves resulted in a heterogeneous immunostaining for laminin-1 around neuron-SGC units in the sections of the corresponding DRG. The pattern of irregular laminin-1 immunofluorescence was more extensive in the ipsilateral than the contralateral DRG of the operated rats. The immunofluorescence for laminin-1 exactly coincided with binding of Concanavalin-A as well as immunostaining for type IV collagen in both naive DRG and DRG affected by nerve ligature. Nidogen immunostaining decreased or fully disappeared at the surface of the SGCs consistently with immunofluorescence staining for laminin-1, but retained or increased in the endothelial cells and ED-1 positive cells invaded the DRG affected by nerve ligature. The results indicate an alteration of the content of basal laminae surrounding the bodies of primary sensory neurons and their SGSs following nerve constriction injury. A modulation of the basal laminae may be related with other cellular and molecular alterations related with peripheral neuropathic pain, for example, expansion of sympathetic sprouts.  相似文献   

17.
P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these alterations diminished after treatment of myocardial ischemic (MI) rats with the P2X7 antagonist oxATP. After siRNA P2X7 in MI rats, the systolic blood pressure, heart rate, serum cardiac enzymes, the expression levels of the satellite glial cell (SGC) or P2X7 were significantly lower than those in MI group. The phosphorylation of ERK 1/2 in SCG participated in the molecular mechanism of the sympathoexcitatory action induced by the myocardial ischemic injury. Retrograde tracing test revealed the sprouting of CGRP or SP sensory nerves (the markers of sensory afferent fibers) from DRG to SCG neurons. The upregulated P2X7 receptor promoted the activation of SGCs in SCG, resulting in the formation of sensory–sympathetic coupling which facilitated the sympathoexcitatory action. P2X7 antagonist oxATP could inhibit the activation of SGCs and interrupt the formation of sensory–sympathetic coupling in SCG after the myocardial ischemic injury. Our findings may benefit the treatment of coronary heart disease and other cardiovascular diseases.  相似文献   

18.
Spirulina platensis treatment (400 mg kg(-1) for 25 days) effectively suppressed peripheral sensitization via modulation of glial activation and improved motor coordination and restoration of functional motor activity in collagen-induced arthritic rats. Spirulina treatment also resulted in an appreciable reduction of the NF200 accumulation in the spinal cord neurons of arthritic rats. This is indicative of neuroprotective action of S. platensis against glutamate excitotoxicity-induced central sensitization produced by the peripheral joint inflammation in the collagen-induced arthritis. The results suggest that effects of S. platensis may be due to its counter regulation of spinal glial activation and could be a potential strategy for the treatment of arthritis.  相似文献   

19.
Previous studies demonstrated that peripheral nerve injury induced excessive neuronal response and glial activation in the spinal cord dorsal horn, and such change has been proposed to reflect the development and maintenance of neuropathic pain states. The aim of this study was to examine neuronal excitability and glial activation in the spinal dorsal horn after peripheral nerve injury. We examined noxious heat stimulation-induced c-Fos protein-like immunoreactivity (Fos-LI) neuron profiles in fourth-to-sixth lumbar (L4–L6) level spinal dorsal horn neurons after fifth lumbar spinal nerve ligation (L5 SNL). Immunofluorescence labeling of OX-42 and GFAP was also performed in histological sections of the spinal cord. A significant increase in the number of Fos-LI neuron profiles in the spinal dorsal horn at the L4 level was found at 3 days after SNL, but returned to a level similar to that in sham-operated controls by 14 days after injury. As expected, a decrease in the number of Fos-LI neuron profiles in the spinal dorsal horn at the L5 level was found at 3 days after SNL. However, these profiles had reappeared in large numbers by 14 and 21 days after injury. Immunofluorescence labeling of OX-42 and GFAP indicated sequential activation of microglia and astrocytes in the spinal dorsal horn. We conclude that nerve injury causes differential changes in neuronal excitability in the spinal dorsal horn, which may coincide with glial activation. These changes may play a substantial role in the pathogenesis of neuropathic pain after peripheral nerve injury.  相似文献   

20.
Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24 h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号