首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Immunofluorescence tests indicate that alloantibodies specific for mouse histocompatibility antigens H-1a, H-3a, and H-13a have been produced, using four different immunizations. Furthermore, an immunization employing donors and recipients which were H-2k at the MHC produced stronger anti-H-3a and anti-H-13a than did immunizations where donors and recipients were H-2b at the MHC.  相似文献   

10.
11.
12.
Summary The authors have studied the occurrence of PAS positive substances during the differentiation of the vaginal epithelium in fetuses and neonatal mice. The material consists of normal mice, mice that have received estradiol injections for the first five days after birth, and mice that have received both estradiol and colchicine injections. The cranial 3/5 of the mouse vaginal epithelium is formed from the pseudostratified columnar müllerian epithelium. This undergoes a differentiation and divides into two zones: a superficial zone and a basal zone. The latter arises from cells migrating basally from the superficial zone. Later the two zones merge and the typical prepuberal vaginal epithelium arises. The results of this investigation point to the cell divisions in the superficial zone being of particular importance for the cell differentiation, even though other possibilities cannot be excluded. The effect of estradiol administration on the epithelium in the vaginal anlage is discussed. The circumstance that estradiol may change the determination of the cells is pointed out.This investigation has been supported by a grant from Maggie Stephens' Stiftelse.  相似文献   

13.
Using in vitro cultures of dissociated brain neurons and astrocytes, we have compared the morphologies of mesencephalic and striatal neurons cultured for two days on mesencephalic and striatal astrocytes in the four possible combinations. From these comparisons, it appears that: 1. Neurons grown on co-regionalized (homotopic) astrocytes have more primary neurites and branching points than neurons grown on heterotopic astrocytes. 2. The total neuritic length is only slightly affected by the type of co-culture. 3. The branched arborization which develop faster on homotopic astrocytes present several dendritic features. Following these morphological observations, we have been able to demonstrate: 1. That mesencephalic astrocytes (but not striatal astrocytes) secrete trypsin sensitive factors different from laminin and FGF that increase the number of primary neurites and branching points but have no or little effect on total neuritic length. 2. That mesencephalic astrocytes (but not striatal astrocytes) present at their surface a 190 KD glycoprotein specifically recognized by the fucose-specific lectin UEA.  相似文献   

14.
15.
In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investigated the characteristics of intermediate progenitors of GABAergic neurons (IPGNs) in mouse neocortex by immunohistochemistry, immunocytochemistry, single-cell RT-PCR and single-cell array analysis. IPGNs were identified by their expression of some neuronal and cell cycle markers. Moreover, we investigated the origins of the neocortical IPGNs by Cre-loxP fate mapping in transgenic mice and the transduction of part of the telencephalic VZ by Cre-reporter plasmids, and found them in the medial and lateral ganglionic eminence. Therefore, they must migrate tangentially within the telencephalon to reach the neocortex. Cell-lineage analysis by simple-retrovirus transduction revealed that the neocortical IPGNs self-renew and give rise to a small number of neocortical GABAergic neurons and to a large number of granule and periglomerular cells in the olfactory bulb. IPGNs are maintained in the neocortex and may act as progenitors for adult neurogenesis.  相似文献   

16.
BM-40 is an extracellular matrix-associated protein and is characterized by an extracellular calcium-binding domain as well as a follistatin-like domain. Secreted modular calcium-binding protein-1 (SMOC-1) is a new member of the BM-40 family. It consists of two thyroglobulin-like domains, a follistatin-like domain and a new domain without known homologues and is expressed ubiquitously in many adult murine tissues. Immunofluorescence studies, as well as immunogold electron microscopy, have confirmed the localization of SMOC-1 in or around basement membranes of adult murine skin, blood vessels, brain, kidney, skeletal muscle, and the zona pellucida surrounding the oocyte. In the present work, light microscopic immunohistochemistry has revealed that SMOC-1 is localized in the early mouse embryo day 7 throughout the entire endodermal basement membrane zone of the embryo proper. SMOC-1 mRNA is synthesized, even in early stages of mouse development, by mesenchymal as well as epithelial cells deriving from all three germ layers. In embryonic stage day 12, and fetal stages day 14, 16, and 18, the protein is present in the basement membrane zones of brain, blood vessels, skin, skeletal muscle, lung, heart, liver, pancreas, intestine, and kidney. This broad and organ-specific distribution suggests multifunctional roles of SMOC-1 during mouse embryogenesis.  相似文献   

17.
Further studies on satellite nucleoli in rat and mouse hepatocytes   总被引:1,自引:0,他引:1  
To provide more information on satellite nucleoli, these nuclear structures were studied by means of cytochemical and immunofluorescence procedures in rat and mouse hepatocytes without and following experimental inhibition of the RNA synthesis. The immuno-staining specific for nucleoli or B23 as well as C23 proteins demonstrated that satellite nucleoli and characteristic nucleoli exhibit the same fluorescence. The number of satellite nucleoli decreased after inhibition of nucleolar RNA synthesis in a similar way to the number of silver-stained granules (SSGs) of characteristic nucleoli. Inhibition of RNA synthesis also reduced the number of hepatocytes containing satellite nucleoli. Thus, satellite nucleoli seem to be real nucleoli from single NORs which did not fuse in the formation of a characteristic nucleolus.  相似文献   

18.
19.
20.
Dentin matrix protein-1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN) are three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) co-expressed/secreted by skeletal and active ductal epithelial cells. Although etiological mechanisms remain unclear, DMP1 is the only one of these three genes currently known to have mutations resulting in human disease, and yet it remains the least studied. All three contain the highly conserved integrin-binding tripeptide, RGD, and experiments comparing the cell attachment and haptotactic migration-enhancing properties of DMP1 to BSP and OPN were performed using human skeletal (MG63 and primary dental pulp cells) and salivary gland (HSG) cells. Mutation of any SIBLING's RGD destroyed all attachment and migration activity. Using its alphaVbeta5 integrin, HSG cells attached to BSP but not to DMP1 or OPN. However, HSG cells could not migrate onto BSP in a modified Boyden chamber assay. Expression of alphaVbeta3 integrin enhanced HSG attachment to DMP1 and OPN and promoted haptotactic migration onto all three proteins. Interchanging the first four coding exons or the conserved amino acids adjacent to the RGD of DMP1 with corresponding sequences of BSP did not enhance the ability of DMP1 to bind alphaVbeta5. For alphaVbeta3-expressing cells, intact DMP1, its BMP1-cleaved C-terminal fragment, and exon six lacking all post-translational modifications worked equally well but the proteoglycan isoform of DMP1 had greatly reduced ability for cell attachment and migration. The sequence specificity of the proposed BMP1-cleavage site of DMP1 was verified by mutation analysis. Direct comparison of the three proteins showed that cells discriminate among these SIBLINGs and among DMP1 isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号