首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretory coils and ducts are two components of eccrine sweat glands with different structures and functions. In our previous study, we combined keratins and α-SMA to distinguish between secretory coils and ducts. However, the key deficiency of the method was that none of the antibodies used was specific for ducts. In this study, we first examined the co-localization of K5/K7, α-SMA/K14, K7/S100P and α-SMA/S100A2 by double-immunofluorescence staining to confirm the localization of S100P and S100A2 in native human eccrine sweat glands, and second we identified secretory coil-like and duct-like structures in the 3D reconstituted eccrine sweat gland spheroids by double-immunofluorescence staining for K7/S100P and α-SMA/S100A2. In native human eccrine sweat glands, S100A2 immunoreactivity was confined to the outer layer and S100P to the inner layer of the duct. In 12-week Matrigel plugs containing eccrine sweat gland cells, double-immunofluorescence staining for K7/S100P and α-SMA/S100A2 could easily distinguish duct-like structures from secretory coil-like structures. We conclude that S100A2 and S100P can be used as specific duct markers in eccrine sweat glands, and combined use of S100P or S100A2 with keratins enables easy to distinction between secretory coils and ducts.  相似文献   

2.
3.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   

4.
Epidermal growth factor (EGF) is secreted into sweat from secretory cells of human sweat glands. The function of EGF in sweat is poorly understood. The biological function of EGF is exerted by the binding of EGF to the receptor (EGFR) and its activation. Therefore, we immunohistochemically localized the activated form of EGFR in human eccrine and apocrine sweat glands to assess the functional importance of the EGF-EGFR system in human sweat glands. Frozen sections of human skin were stained with a monoclonal antibody (MAb) specific for tyrosine-phosphorylated (activated) EGFR and with an MAb that stains both activated and non-activated EGFR. In the secretory portion of eccrine sweat glands, nuclei of the secretory cells were stained with the anti-activated EGFR MAb. In coiled and straight portions of eccrine sweat ducts, nuclei of luminal and peripheral cells were stained with the antibody specific for activated EGFR. Luminal cell membranes and luminal cytoplasm of inner ductal cells possessed non-activated EGFR. In the secretory portion of apocrine sweat glands, activated EGFRs were present in cytoplasm and nuclei of secretory cells. These data suggest that EGF, already known to be present in the cytoplasm of secretory cells in eccrine and apocrine sweat glands, activates EGFR in the nuclei of secretory cells themselves in an intracrine manner. Because ductal cells do not express EGF, EGF in the sweat secreted from the secretory cells should activate EGFR in the ductal cells in a paracrine manner. (J Histochem Cytochem 49:597-601, 2001)  相似文献   

5.
Acrosyringium, duct and secretory epithelium as well as myoepithelial cells of human eccrine sweat glands have been characterized by different immunostaining patterns with mono- and polyclonal antibodies to a wide spectrum of tissue antigens. Using monoclonal antibodies to neuron-specific enolase (NSE) and melanoma-associated antigens (LS 59, HMB-45, NKI/C-3) the expression of neuroectodermal antigens in secretory coils was demonstrated. Myoepithelial cells were double-stained with polyclonal vimentin and monoclonal CAM 5.2 (against keratins nos. 8, 18, 19) antibodies.  相似文献   

6.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

7.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

8.
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.  相似文献   

9.
The aim of this study is to characterize the cell proliferation and proliferating cell types during three-dimensional reconstitution of eccrine sweat glands. Eccrine sweat gland cells suspended in Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35 and 42 days post-implantation, Matrigel plugs were immunostained for Ki67, to detect cycling cells, and the Ki67 labeling index at different time points was calculated. Three pairs of antibodies, Ki67/K7, Ki67/K14 and Ki67/α-SMA, were used to identify proliferating cell types in the plugs, on days 28, 35 and 42, by immunofluorescence double staining. The Ki67 labeling index on the first day of implantation was 30.53%, rapidly reached a peak value of 81.43% at 2 days post-implantation, and then decreased gradually to a low of 2.87% at 42 days. Double immunofluorescence staining showed that K14/Ki67 double-stained cells accounted for 80% of the Ki67-positive cells, whereas K7/Ki67 and α-SMA/Ki67 double-stained cells each accounted for 10% of the Ki67-positive population on days 28, 35, or 42 post-implantation. We conclude that eccrine sweat gland cells rapidly enter the cell cycle after implantation, but quickly show decreased cell proliferation and increased cell differentiation.  相似文献   

10.
Interactions between the extracellular matrix (ECM) and epithelial cells are necessary for the proper organization and function of the epithelium. In the present study, we show that human eccrine sweat gland epithelial cells cultured in matrigel, a representation of ECM components, constitute a good model for studying three-dimensional reconstruction, wound repair and regeneration and differentiation of the human eccrine sweat gland. In matrigel, epithelial cells from the human eccrine sweat gland form tubular-like structures and then the tubular-like structures coil into sphere-like shapes that structurally resemble human eccrine sweat glands in vivo. One sphere-like shape can be linked to another sphere-like shape or to a cell monolayer via tubular-like structures. Hematoxylin and eosin staining has revealed that the tubular-like structures have a single layer or stratified epithelial cells located peripherally and a lumen at the center, similar to the secretory part or duct part, respectively, of the eccrine sweat gland in sections of skin tissue. Immunohistochemical analysis of the cultures has demonstrated that the cells express CK7, CK19, epithelial membrane antigen and actin. Thus, matrigel promotes the organization and differentiation of epithelial cells from the human eccrine sweat gland into eccrine sweat gland tissues.  相似文献   

11.
It is well known that eccrine sweating is attenuated in patients with atopic dermatitis (AD). We have reported by using proteome analysis that gross cystic disease fluid protein 15 (GCDFP15), a substance secreted from eccrine sweat glands, is decreased in tape-stripped stratum corneum (SC) samples from AD patients. The aim of this study was to evaluate GCDFP15 production by eccrine glands with SC samples and to assess sweating in AD. SC samples were obtained from 51 healthy control (HC) and 51 AD individuals. Sweat samples were from 18 HC and 12 AD subjects. GCDFP15 was quantified by ELISA. By immunohistochemistry, the expression of GCDFP15 in eccrine glands was examined in normal and AD skin specimens. To identify GCDFP15-producing cells, double immunofluorescence staining for GCDFP15 and S100 protein was performed in frozen sections. To address the mechanism underlying the decreased eccrine sweating in AD patients, we examined the expression of cholinergic receptor M3 (CHRM3), a receptor for acetylcholine-induced sweating, in eccrine sweat glands. The amounts of GCDFP15 in the SC extracts were significantly lower in AD than HC (P < 0.0001). The sweat samples from AD patients also had lower levels of GCDFP15 concentration (P < 0.05). Immunohistochemistry showed positive GCDFP15 staining in the eccrine gland secretory cells and the ductal and acrosyringial lumen in normal skin, but AD lacked clear staining. Immunofluorescence staining revealed that GCDFP15 was co-expressed with S100 protein, suggesting that the clear cell of eccrine glands produces GCDFP15. Finally, we found that the expression of CHRM3 was depressed in AD, suggesting contribution to the low sweating. The SC of AD patients contains a low amount of GCDFP15 due to both low sweating and low GCDFP15 concentration in the sweat. GCDFP15 in SC is a potential marker for dysregulated sweating in AD.  相似文献   

12.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   

13.
We studied the localization of the epidermal growth factor (EGF) in eccrine and apocrine sweat glands with light microscopic and electron microscopic immunohistochemistry. Anti-human EGF (anti-hEGF) polyclonal antiserum and anti-hEGF monoclonal antibody (MAb) were used for the study. Light microscopic immunohistochemistry with monoclonal and polyclonal antibodies showed that hEGF-like immunoreactivity was strongly positive in the myoepithelial cells and weakly positive in the secretory cells of eccrine sweat glands. In apocrine sweat glands, it was strongly positive in the secretory cells as well as in the myoepithelial cells. Immunoelectron microscopy with polyclonal antibody showed that hEGF-like immunoreactivity was present in secretory granules of apocrine secretory cells. These granules had mitochondrion-like internal structure. No reactivity was observed on the eccrine secretory cells by immunoelectron microscopy. Neither dark cell granules nor mitochondria in eccrine secretory cells were labeled with anti-hEGF antibody. In both eccrine and apocrine sweat glands, hEGF-like immunoreactivity was diffusely present in the cytoplasm of myoepithelial cells. However, nuclei and mitochondria of myoepithelial cells were devoid of immunoreactivity for hEGF. Our observations indicate that apocrine sweat glands may secrete more hEGF in the sweat than eccrine sweat glands.  相似文献   

14.
A study using monoclonal antibodies was made to evaluate the immunohistochemical localization of S-100 protein subunits alpha and beta in a total of 41 mixed tumours and adenomas of sweat gland origin. Normal eccrine glands showed positive staining for S-100 alpha in the secretory portion and in epithelial cells located in the transitional area from the coiled duct to the intraepidermal duct, as well as granular deposition of S-100 beta at the luminal surface of the secretory coil and duct. The myoepithelial cells were negative for S-100 alpha and beta. In mixed tumours, the tumour cells were round or oval in shape and displayed markedly positive staining for S-100 alpha and slightly positive or negative staining for S-100 beta. S-100 alpha staining in clear cell tumours was typically more intense than in any other sweat gland tumour. It is possible that clear cell tumours may arise from the transitional area of sweat glands. Spindle cell tumours displayed on abundance of S-100 alpha subunits but little S-100 beta. Occasional spindle cells located in the outer layer of tubular structures within tumours gave positive S-100 alpha staining. This result was different from that seen in pleomorphic salivary adenomas. Cells having undergone chondroidal changes revealed a positive S-100 reaction.  相似文献   

15.
An analysis is presented on insensible water loss from the human body at rest through exposed skin surfaces into still air. Possible sites of moisture release are identified as the stratum corneum of the skin, free surfaces of dilute sweat liquids perpetually present in the microscopic ducts of a large population of eccrine sweat glands, and moist microvillous processes which line part of the periductal surfaces in the glands, particularly in the helical coils within the stratum spinosum of the epidermis. Water supply to the sites involves transepidermal migration across skin tissue layers, secretion and partial reabsorption of solutes and water within eccrine glands, and transport across periductal lining of eccrine glands from the surrounding connective tissues respectively. Evaporation and gas phase diffusion within eccrine ducts were modelled. Basal loss rates of water (as regulated by the ambient temperature and relative humidity and by aspects of the anatomy of and physiological factors for eccrine glands, the epidermis and the dermis) were calculated at between 1 and 20 g hr-1 at an ambient temperature of 25 degrees C and a relative humidity of 60% as an example. Such rates are significant fractions of experimental values for insensible water loss rates reported at between 4 and 35 g hr-1 in air at 22-30 degrees C and a relative humidity of 30-60%.  相似文献   

16.
Both, calmodulin (CaM) as well as the antigen Ki67 show a close relationship to cell proliferation. By means of specific antibodies against them, it has become possible to study the spatial distribution of proliferative compartments in tissues. We performed an indirect immunofluorescence study on unfixed frozen sections of human adult skin to gain more informations about the spatial distribution of immunoreactive CaM and Ki67 in skin appendages, i.e. anagen hair follicle, sebaceous and eccrine sweat gland. Two major patterns of immunoreactivity were seen: Type (1) or epidermis-like, which was present in the interfollicular epidermis and the pilosebaceous unit. Type (2) or sweat gland type, which was seen in eccrine sweat glands. Both types disclosed significant differences in the relative number of proliferative cells in S-phase, which might be a consequence of a quiet different tissue architecture. Furthermore, myoepithelial cells of secretory coils were likely to represent mainly SQ-cells. Their immunoreactivity in human skin was quiet different from other parts of eccrine sweat glands suggesting another ontogenetic pathway.  相似文献   

17.
The ultracytochemical localization of membrane-bound guanylate cyclases A and C, stimulated by atrial natriuretic peptide and guanylin respectively, has been studied in human sweat glands. The results showed that the peptides stimulated guanylate cyclases A and C in both eccrine and apocrine glands. In the secretory cells, enzymatic activity was present on the plasma membranes and on intracellular membranes involved in the secretory mechanism. In eccrine glands, the cells of the excretory duct also presented enzymatic activity on the plasma membranes. In both glands, myoepithelial cells, surrounding the secretory cells, exhibited only guanylate cyclase A activity. These localizations of enzymatic activity suggest a role for both atrial natriuretic peptide and guanylin in regulating glandular secretion.  相似文献   

18.
 The distribution of S-100 protein and its α- and β-subunits in bovine exocrine glands was studied by indirect immunohistochemistry. The entire spectrum of salivary glands, glands of the respiratory tract, intestinal glands, male and female genital glands, and skin glands was examined. S-100 and its β-subunit were identified in most serous secretory cells of mixed salivary glands, although secretory acini in some serous glands remained unreactive for these antigens. Mucous cells were constantly negative; mucoid cells were positive in the lacrimal and Harderian gland. The α-subunit of S-100 protein was identified in serous cells but the staining reaction was faint. Subunits of S-100 showed a characteristic distribution along the excretory duct systems of compound glands: S-100 and the β-subunit were present in intercalated duct epithelium, while striated duct epithelium stained for S100-α. Therefore, it is suggested that S100-α is related to resorption and secretion in striated ducts, while S100-β may govern acinar exocytosis and probably regulates proliferation and differentiation of glandular cells. Differing staining intensities for S-100 and its subunits in secretory cells of exocrine glands most probably indicate functional differences with regard to secretory activity and the cell cycle. Accepted: 11 February 1997  相似文献   

19.
The ultracytochemical localization of adenylate cyclase (AC) was studied after stimulation with pituitary adenylate cyclase activating peptide (PACAP) in human sweat glands. PACAP stimulated AC in both eccrine and apocrine glands. In the secretory cells, enzymatic activity was associated with membranes involved in the secretory mechanism. In both glands, the cells of the excretory duct and myoepithelial cells presented AC activity. These localizations of enzymatic activity suggest a role for PACAP in regulating glandular secretion.  相似文献   

20.
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号