首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Bioconversion of dl-2-amino-Δ2-thiazoline-4-carboxylic acid (dl-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of l-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated l-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve l-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of dl-ATC for the in situ removal of l-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for l-cysteine and low adsorption for dl-ATC, which is a favorable option. With in situ addition of 60 g L?1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L?1 of dl-ATC was converted to l-cysteine with 90.4 % of yield and 28.6 mmol L?1 h?1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of l-cysteine was improved by 2.27-fold using ISPR method.  相似文献   

2.
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, l-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM–10 µM), l-cysteine (100 nM–10 µM) and N-acetylcysteine (10 µM–1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: l-cysteine?>?GYY 4137?>?N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, l-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and l-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and l-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), l-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of l-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.  相似文献   

3.
l-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the l-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for l-malic acid biosynthesis. Second, the l-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the l-malic acid efflux system. Finally, the l-malic acid pathway was optimized by controlling gene expression levels, and the final l-malic acid concentration, yield, and productivity were up to 30.25 g L?1, 0.30 g g?1, and 0.32 g L?1 h?1 in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L?1, 0.31 g g?1, and 0.32 g L?1 h?1, respectively. The metabolic engineering strategy used here will be useful for efficient production of l-malic acid and other chemicals.  相似文献   

4.
This study was conducted with rats to determine the safety of long-term dietary supplementation with l-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % l-arginine and received drinking water containing l-arginine-HCl (0, 1.8, or 3.6 g l-arginine/kg body-weight/day; n = 10/group). These supplemental doses of l-arginine were equivalent to 0, 286, and 573 mg l-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with l-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. l-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. l-Arginine supplementation reduced plasma levels of leptin. Additionally, l-arginine supplementation increased l-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by l-arginine. Collectively, these results indicate that dietary supplementation with l-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g l-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of l-arginine to humans.  相似文献   

5.
l-valine is an essential branched-amino acid that is widely used in multiple areas such as pharmaceuticals and special dietary products and its use is increasing. As the world market for l-valine grows rapidly, there is an increasing interest to develop an efficient l-valine-producing strain. In this study, a simple, sensitive, efficient, and consistent screening procedure termed 96 well plate-PC-HPLC (96-PH) was developed for the rapid identification of high-yield l-valine strains to replace the traditional l-valine assay. l-valine production by Brevibacterium flavum MDV1 was increased by genome shuffling. The starting strains were obtained using ultraviolet (UV) irradiation and binary ethylenimine treatment followed by preparation of protoplasts, UV irradiation inactivation, multi-cell fusion, and fusion of the inactivated protoplasts to produce positive colonies. After two rounds of genome shuffling and the 96-PH method, six l-valine high-yielding mutants were selected. One genetically stable mutant (MDVR2-21) showed an l-valine yield of 30.1 g/L during shake flask fermentation, 6.8-fold higher than that of MDV1. Under fed-batch conditions in a 30 L automated fermentor, MDVR2-21 accumulated 70.1 g/L of l-valine (0.598 mol l-valine per mole of glucose; 38.9% glucose conversion rate). During large-scale fermentation using a 120 m3 fermentor, this strain produced?>?66.8 g/L l-valine (36.5% glucose conversion rate), reflecting a very productive and stable industrial enrichment fermentation effect. Genome shuffling is an efficient technique to improve production of l-valine by B. flavum MDV1. Screening using 96-PH is very economical, rapid, efficient, and well-suited for high-throughput screening.  相似文献   

6.

Objective

To strengthen NADH regeneration in the biosynthesis of l-2-aminobutyric acid (l-ABA).

Results

l-Threonine deaminase (l-TD) from Escherichia coli K12 was modified by directed evolution and rational design to improve its endurance to heat treatment. The half-life of mutant G323D/F510L/T344A at 42 °C increased from 10 to 210 min, a 20-fold increase compared to the wild-type l-TD, and the temperature at which the activity of the enzyme decreased by 50% in 15 min increased from 39 to 53 °C. The mutant together with thermostable l-leucine dehydrogenase from Bacillus sphaericus DSM730 and formate dehydrogenase from Candida boidinii constituted a one-pot system for l-ABA biosynthesis. Employing preheat treatment in the one-pot system, the biosynthesis of l-ABA and total turnover number of NAD+/NADH were 0.993 M and 16,469, in contrast to 0.635 M and 10,531 with wild-type l-TD, respectively.

Conclusions

By using the engineered l-TD during endured preheat treatment, the one-pot system has achieved a higher productivity of l-ABA and total turnover number of coenzyme.
  相似文献   

7.

Objectives

To improve the production of α-ketoglutaric acid (α-KG) from l-glutamate by whole-cell biocatalysis.

Results

A novel and highly active l-glutamate oxidase, SmlGOX, from Streptomyces mobaraensis was overexpressed and purified. The recombinant SmlGOX was approx. 64 kDa by SDS-PAGE. SmlGOX had a maximal activity of 125 ± 2.7 U mg?1 at pH 6.0, 35 oC. The apparent Km and Vmax values of SmlGOX were 9.3 ± 0.5 mM and 159 ± 3 U mg?1, respectively. Subsequently, a co-expression plasmid containing the SmlGOX and KatE genes was constructed to remove H2O2, and the protein levels of SmlGOX were improved by codon optimization. Finally, by optimizing the whole-cell transformation conditions, the production of α-KG reached 77.4 g l?1 with a conversion rate from l-glutamate of 98.5% after 12 h.

Conclusions

An efficient method for the production of α-KG was established in the recombinant Escherichia coli, and it has a potential prospect in industrial application.
  相似文献   

8.
The direct fermentative production of l-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low l-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing l-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both l-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products l-alanine and l-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards l-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as l-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the l-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of l-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of l-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve l-serine productivity.  相似文献   

9.
Angiogenesis and microvascular leakage are features of chronic inflammatory diseases of which molecular mechanisms are poorly understood. We investigated the effects of interleukin-1β (IL-1β) on the expression and secretion of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) in porcine airway smooth muscle cells (PASMC) in relation to a nitric oxide (NO) pathway. Serum-deprived (48 h) PASMC were stimulated with IL-1β alone or with NO donor, l-arginine and/or NO synthase inhibitor l-NAME for 4 and 24 h. IL-1β did not affect PlGF release, but augmented VEGF release (2.4-fold) after 24 h. VEGF release was inhibited by l-NAME (531.8 ± 52 pg/ml), but restored and further elevated by l-arginine (1,529 ± 287 pg/ml). IL-1β up-regulated VEGF mRNA (1.8-fold) and this response was attenuated by l-NAME (1.1-fold) and augmented by l-arginine (3.8-fold) at 4 h. Restoration of a NO pathway by l-arginine in l-NAME-treated cells resulted in elevated VEGF mRNA levels (2.2-fold). [3H]Thymidine incorporation assay revealed enhanced porcine pulmonary artery endothelial cell proliferation in response to IL-1β, VEGF and PlGF, and this mitogenic effect was not influenced via the NO pathway. Our results suggest that a NO pathway modulates VEGF synthesis during inflammation contributing to bronchial angiogenesis and vascular leakage.  相似文献   

10.

Objectives

To evaluate the effects of 12 biotic and abiotic elicitors for increasing the production of plumbagin in Plumbago indica root cultures.

Results

Most elicitors showed minimal effects on the root dry weight, except for 250 mg chitosan l?1 and 10 mM l-alanine that markedly decreased root biomass by about 40 % compared to the untreated root cultures (5 g l?1). Treatments with 100 µM AgNO3 significantly increased intracellular plumbagin production by up to 7.6 mg g?1 DW that was 4-fold more than the untreated root cultures (1.9 mg g?1 DW). In contrast, treatments with 150 mg chitosan l?1, 5 mM l-alanine, and 50 µM 1-naphthol significantly enhanced the extracellular secretion of plumbagin by up to 10.6, 6.9, and 5.7 mg g?1 DW, respectively, and increased the overall production of plumbagin by up to 12.5, 12.5, and 9.4 mg g?1 DW, respectively.

Conclusions

Chitosan (150 mg l?1), l-alanine (5 mM), and 1-naphthol (50 µM) were the best elicitors to enhance plumbagin production in P. indica root cultures.
  相似文献   

11.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

12.
This study was carried out to investigate the anti-carcinogenic effect of l-carnosine in human carcinoma cells (SNU-423). The SNU-423 cancer cells were cultured at a density of 2 × 104 cells/well in Dulbecco modified Eagle medium. After 24 h of adherence, the cells were treated with l-carnosine (0.2 and 1 mg/mL) for 48 h. Then, cell viability was assessed by sulforhodamine assay, while mitochondrial dysfunction was measured by fluorescence microscopy using chromatin-specific dye Hoechst 33258. Intracellular levels of ROS were assayed by fluorescence spectroscopy with 2′,7′-dichlorofluorescein diacetate (DCFDA). l-Carnosine significantly inhibited the growth of the SNU-423 cells (p < 0.05). The inhibitory effect of l-carnosine was confirmed by results from mitochondrial fragmentation assay. The relative fluorescent unit was increased in a dose-dependent manner by l-carnosine, with values of 79.43, 186.87 and 400.89 for 0.6, 0.8 and 1 mg/mL of l-carnosine, respectively (p < 0.05). These results demonstrate that l-carnosine exerts anti-carcinogenic effects in human liver cancer cells.  相似文献   

13.
l-Glutamate decarboxylase (GAD) transforms l-glutamate into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene(s) can synthesize GABA from its own produced l-glutamate. To enhance GABA production in recombinant C. glutamicum strain SH, metabolic engineering strategies were used to improve the supply of the GABA precursor, l-glutamate. Five new strains were constructed here. First, the ppc gene was coexpressed with two GAD genes (gadB1 and gadB2). Then, the mdh gene was deleted in C. glutamicum SH. Next, gadB1-gadB2 and gadB1-gadB2-ppc co-expression plasmids were transformed into C. glutamicum strains SH and Δmdh, resulting in four recombinant GAD strains SE1, SE2, SDE1, and SDE2, respectively. Finally, the mdh gene was overexpressed in mdh-deleted SDE1, generating the mdh-complemented GAD strain SDE3. After fermenting for 72 h, GABA production increased to 26.3?±?3.4, 24.8?±?0.7, and 25.5?±?3.3 g/L in ppc-overexpressed SE2, mdh-deleted SDE1, and mdh-deleted ppc-overexpressed SDE2, respectively, which was higher than that in the control GAD strain SE1 (22.7?±?0.5 g/L). While in the mdh-complemented SDE3, GABA production decreased to 20.0?±?0.6 g/L. This study demonstrates that the recombinant strains SE2, SDE1, and SDE2 can be used as candidates for GABA production.  相似文献   

14.

Objectives

To find an l-glutamate oxidase (LGox), to be used for the quantitative analysis of l-glutamic acid, an lgox gene encoding LGox from Streptomyces diastatochromogenes was isolated, cloned and characterized.

Results

The gene had an ORF of 1974 bp encoding a protein of 657 amino acid residues. In comparison to the LGox precursor, the proteinase K-treated enzyme exhibited improved affinity to substrate and with a K m of 0.15 mM and V max of 62 μmol min?1 mg?1. The 50% thermal inactivation temperature of the proteinase K treated enzyme was increased from 50 to 70 °C. The enzyme exhibited strict specificity for l-glutamate.

Conclusions

LGox treated by proteinase K exhibited strict specificity for l-glutamate, good thermostability and high substrate affinity.
  相似文献   

15.
Plumbagin is associated with potent antimicrobial and anticancer properties. However, due to poor supply of the natural product, efforts are being made to improve plumbagin biosynthesis and bioproduction. The aim of this work was to enhance production of plumbagin from root cultures of Plumbago indica L. through precursor feeding using l-alanine followed by in situ adsorption of plumbagin on the nonpolar copolymer adsorbent, styrene–divinylbenzene resin (Diaion® HP-20). l-alanine fed at a concentration of 5 mM to 14 days old root culture followed by the sequential addition of Diaion® HP-20 (10 g L?1) after 36 h of l-alanine-fed significantly increased plumbagin production to 22.4 mg g?1 dry weight (DW). The level of productivity obtained was 14- and 1.6-fold higher than that achieved using untreated root cultures (1.6 mg g?1 DW) or l-alanine feeding alone (14.4 mg g?1 DW) within 16 days of the culture. The results of this work suggest the use of precursor feeding in combination with in situ adsorption as an easy and cost effective tool for the large-scale production of medicinally valued compounds like plumbagin.  相似文献   

16.

Background

Corn stover, as one important lignocellulosic material, has characteristics of low price, abundant output and easy availability. Using corn stover as carbon source in the fermentation of valuable organic chemicals contributes to reducing the negative environmental problems and the cost of production. In ethanol fermentation based on the hydrolysate of corn stover, the conversion rate of fermentable sugars is at a low level because the native S. cerevisiae does not utilize xylose. In order to increase the conversion rate of fermentable sugars deriving from corn stover, an effective and energy saving biochemical process was developed in this study and the residual xylose after ethanol fermentation was further converted to l-lactic acid.

Results

In the hybrid process based on the hydrolysate of corn stover, the ethanol concentration and productivity reached 50.50 g L?1 and 1.84 g L?1 h?1, respectively, and the yield of ethanol was 0.46 g g?1. The following fermentation of l-lactic acid provided a product titer of 21.50 g L?1 with a productivity of 2.08 g L?1 h?1, and the yield of l-lactic acid was 0.76 g g?1. By adopting a blank aeration before the inoculation of B. coagulans LA1507 and reducing the final cell density, the l-lactic acid titer and yield reached 24.25 g L?1 and 0.86 g g?1, respectively, with a productivity of 1.96 g L?1 h?1.

Conclusions

In this work, the air pumped into the fermentor was used as both the carrier gas for single-pass gas stripping of ethanol and the oxygen provider for the aerobic growth of B. coagulans LA1507. Ethanol was effectively separated from the fermentation broth, while the residual medium containing xylose was reused for l-lactic acid production. As an energy-saving and environmental-friendly process, it introduced a potential way to produce bioproducts under the concept of biorefinery, while making full use of the hydrolysate of corn stover.
  相似文献   

17.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

18.
In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate l-lactic acid (l-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of l-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing l-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of l-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in l-LA production or yield; however, the productivity of l-LA increased by 14.3%.  相似文献   

19.

Objective

To develop a new and efficient biocatalytic synthesis method of imidazole-4-acetic acid (IAA) from l-histidine (l-His).

Results

l-His was converted to imidazole-4-pyruvic acid (IPA) by an Escherichia coli whole-cell biocatalyst expressing membrane-bound l-amino acid deaminase (ml-AAD) from Proteus vulgaris firstly. The obtained IPA was subsequently decarboxylated to IAA under the action of H2O2. Under optimum conditions, 34.97 mM IAA can be produced from 50 mM l-His, with a yield of 69.9%.

Conclusions

Compared to the traditional chemical synthesis, this biocatalytic method for IAA production is not only environmentally friendly, but also more cost effective, thus being promising for industrial IAA production.
  相似文献   

20.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号