首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

We evaluated the therapeutic effect and fate of high doses of human umbilical cord Wharton jelly cells (hUCWJCs) after IP administration to streptozotocin (STZ)-induced diabetic mice.

Methods

Type 1 diabetes (T1D) was induced in Kunming mice via IP injection of STZ. hUCWJCs were labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). Diabetic animals with sustained hyperglycemia for at least 2 weeks were administered 1 × 107 Dil-hUCWJCs via intraperitoneal injection. Insulin, glucagon and PDX-1 were detected by immunofluorescence with confocal microscopy. Serum mouse and human C-peptide was assayed in blood collected via intracardiac puncture. Specific β-cell differentiation markers and human DNA were assessed using qPCR performed with 200 ng of target DNA.

Results

hUCWJCs migrated to the STZ-damaged organs and contributed to lower blood glucose levels in 30% of the treated mice. Confocal microscopy revealed the presence of resident insulin-positive cells in the liver and kidneys. hUCWJC-treated mice with restored hyperglycemia also showed increased serum mouse C-peptide levels. The qPCR results, particularly in the liver, revealed that after transplantation hUCWJCs upregulated genes of endocrine precursors but failed to express endocrine stage markers. Mice with restored hyperglycemia had reduced urinary volume and lacked glomerular hypertrophy, exhibiting a morphology resembling that of normal glomeruli. Moreover, we also verified that one of the possible mechanisms by which hUCWJCs exert immunosuppressive effects is through down-regulation of the cell surface receptor HLA-1.

Conclusions

We confirmed the potential of IP administration of hUCWJCs and the capability of these cells to migrate to damaged tissues and promote insulin secretion from non-pancreatic local cells and to improve renal damage. These findings confer unique therapeutic properties to hUCWJCs, suggesting a promising future in the treatment of diabetes mellitus.
  相似文献   

2.
3.
Antioxidant activity and biological properties of ferulic acid (FA) are well recognized. This study was designed to estimate the potential utility of FA administered orally at low dosage for improvement of hyperglycemia in diabetes. With this aim we have evaluated the hypoglycemic effect of FA in two type diabetic animal models: (1) streptozotocin (STZ)-induced diabetic mice, a model of insulin-dependent diabetes mellitus (IDDM); (2) KK-Ay mice, a model of non-insulin dependent diabetes mellitus (NIDDM). In addition, we measured the production of thiobarbituric acid-reactive substances (TBARS) in brown adipose tissues of diabetic mice at the end of FA feeding experiment. FA at 0.01% and 0.1% of basal diet showed to suppress significantly blood glucose levels in STZ-induced diabetic mice. In KK-Ay mice 0.05% FA suppressed effectively blood glucose levels. In addition, FA inhibited the lipid peroxidation in brown adipose tissue of diabetic mice. Taken together, these findings suggest that dietary FA may be useful in alleviating oxidative stress and attenuating the hyperglycemic response associated with diabetes.  相似文献   

4.
Wang  Xin  Xiu  Weiye  Han  Ye  Xie  Jingnan  Zhang  Kai  Zhou  Kechi  Ma  Yongqiang 《Glycoconjugate journal》2022,39(3):413-427
Glycoconjugate Journal - In the current study, we extracted a polysaccharide from sweet corncob and evaluated its hypoglycemic function. After collection in water, alcohol precipitation, and...  相似文献   

5.
6.
7.
In humans, spontaneous autoimmune attack against cardiomyocytes often leads to idiopathic dilated cardiomyopathy (IDCM) and life-threatening heart failure. HLA-DQ8 transgenic IAb knockout NOD mice (NOD.DQ8/Ab(0); DQA1*0301, DQB1*0302) develop spontaneous anticardiomyocyte autoimmunity with pathology very similar to human IDCM, but why the heart is targeted is unknown. In the present study, we first investigated whether NOD/Ab(0) mice transgenic for a different DQ allele, DQ6, (DQA1*0102, DQB1*0602) would also develop myocarditis. NOD.DQ6/Ab(0) animals showed no cardiac pathology, implying that DQ8 is specifically required for the myocarditis phenotype. To further characterize the cellular immune mechanisms, we established crosses of our NOD.DQ8/Ab(0) animals with Rag1 knockout (Rag1(0)), Ig H chain knockout (IgH(0)), and beta(2)-microglobulin knockout (beta(2)m(0)) lines. Adoptive transfer of purified CD4 T cells from NOD.DQ8/Ab(0) mice with complete heart block (an indication of advanced myocarditis) into younger NOD.DQ8/Ab(0) Rag1(0) animals induced cardiac pathology in all recipients, whereas adoptive transfer of purified CD8 T cells or B lymphocytes had no effect. Despite the absence of B lymphocytes, NOD.DQ8/Ab(0)IgH(0) animals still developed complete heart block, whereas NOD.DQ8/Ab(0)beta(2)m(0) mice (which lack CD8 T cells) failed to develop any cardiac pathology. CD8 T cells (and possibly NK cells) seem to be necessary to initiate disease, whereas once initiated, CD4 T cells alone can orchestrate the cardiac pathology, likely through their capacity to recruit and activate macrophages. Understanding the cellular immune mechanisms causing spontaneous myocarditis/IDCM in this relevant animal model will facilitate the development and testing of new therapies for this devastating disease.  相似文献   

8.
To provide insights into the molecular mechanisms underlying diabetes mellitus, we performed a proteomic study on two diabetic animal models, streptozotocin (STZ)-induced diabetic rats (T1DM) and genetically diabetic (C57BL/6J ob/ob) mice (T2DM). To better understand the recovery process of those diabetic rodents, we examined the effect of hypoglycemic dipeptide Cyclo (His-Pro) (CHP) treatment on the differential expression of pancreatic proteins in both animal models. Oral administration of CHP had an excellent hypoglycemic effect in both animal models, lowering the average plasma glucose level by over 50%. Pancreatic proteins were separated by two-dimensional gel electrophoresis (2-DE) and identified by MALDI-TOF mass spectrometry. This study allowed, for the first time, the identification of 34 proteins that are related to diabetes and potential targets of CHP, a potent anti-diabetic agent for both T1DM and T2DM. The alterations in the expression of these proteins could indicate a tendency for diabetic animals to overcome their diabetic state. These proteins are involved in cellular functions such as metabolism, cellular structure, oxidative stress, as well as signal and energy transduction. Some have already been linked to diabetes, suggesting that the newly identified proteins might also be significant in the etiology of this pathology and should be further investigated. Furthermore, CHP has emerged as a potent tool for both the treatment and study of the molecular mechanisms underlying diabetes. Thus, the findings presented here provide new insights into the study and potential treatment of this pathology.  相似文献   

9.
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) isolated from human umbilical Wharton’s Jelly are a population of primitive and pluripotent cells. In specific conditions, hUCMSCs can differentiate into various cells, including adipocytes, osteoblasts, chondrocytes, neurocytes, and endothelial cells. However, few studies have assessed their differentiation into epidermal cells in vitro. To assess the potential of hUCMSCs to differentiate into epidermal cells, a microporous membrane-based indirect co-culture system was developed in this study. Epidermal stem cells (ESCs) were seeded on the bottom of the microporous membrane, and hUCMSCs were seeded on the top of the microporous membrane. Cell morphology was assessed by phase contrast microscopy, and the expression of early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), and β1-integrin, was determined by immunofluorescence, Western blot, and quantitative real-time PCR (Q-PCR) analyses. hUCMSC morphology changed from spindle-like to oblate or irregular with indirect co-culture with ESCs; they also expressed greater levels P63, CK19, and β1-integrin mRNA and protein compared to the controls (p < 0.01). As compared to normal co-cultures, indirect co-culture expressed significantly greater CK19 protein (p < 0.01). Thus, hUCMSCs may have the capability to differentiate into the epidermal lineage in vitro, which may be accomplished through this indirect co-culture model.  相似文献   

10.
In three different murine models of bone marrow (BM) transplantation the capacity of asialo GM1+ cells to suppress graft-vs-host disease (GVHD) was investigated. In a first model, total lymphoid irradiation (TLI)-treated BALB/C mice were given 1 mg of anti-asialo GM1 antibody. This led to the disappearance of functional suppressor cells after TLI. Injections of anti-asialo GM1 into TLI-treated BALB/C mice before infusion of 30 x 10(6) fully allogeneic (C3H) BM cells, led to a significantly decreased survival rate as compared to TLI-treated mice injected with control serum before BM transplantation (survival 29 and 83%, respectively, at 120 days after transplantation, p = 0.0032 log rank). The mortality of the former group was due to GVHD as 1 degree all dying animals showed clinical and histologic signs of GVHD, 2 degrees all animals were chimeric and 3 degrees mice receiving no or syngeneic BALB/C BM had excellent survival rates excluding BM aplasia or increased susceptibility for infections as reason for the mortality of the allogeneic BM recipients. In a second model, asialo GM1+ cells were removed in vitro from the C3H BM inoculum before injection into lethally irradiated (9 Gy) BALB/C recipients. In mice kept in specific pathogen-free conditions, this procedure resulted into a significant mortality (12/12) as compared to mice receiving BM pretreated with control serum (1/12, p = 0.0001 log rank). When kept in conventional housing, GVHD occurred in both groups but much earlier in the group receiving anti-asialo GM1-treated BM (median survival time 6 vs 46 days for the control mice, p = 0.001 log rank). No animal receiving anti-asialo GM1 and treated with syngeneic BM died, thus excluding toxicity, increased susceptibility to infections, or decreased graft take as a cause of mortality. In a last model, asialo GM1 cells were removed from syngeneic BM in a BM transplantation model in which T cell-depleted syngeneic (BALB/C) and non-T cell-depleted allogeneic (C3H) BM was administered to lethally irradiated (9 Gy) BALB/C mice. Also in this model GVHD-related mortality only occurred in the group of mice receiving syngeneic BM from which asialo GM+ cells were depleted before infusion (3/12). Our experiments thus clearly show that asialo GM1+ cells from both recipient (the TLI model) as well as donor origin (the TBI experiments) can suppress the occurrence of GVHD.  相似文献   

11.
Therapeutic angiogenesis can be induced by the implantation of bone marrow mononuclear cells. We investigated the roles of mature mononuclear cell and stem cell fractions in bone marrow in this treatment. Although CD34 is the most popular marker for stem cell selection for inducing therapeutic angiogenesis, we separated CD117-positive cells (CD117+) from mature bone marrow mononuclear cells [CD117-negative cells (CD117-)] from mice using the antibody to the stem cell receptor, because some of the bone marrow stem cells that express CD117+ and CD34- might generate angiogenic cytokines and differentiate into endothelial cells. The angiogenic potency of CD117+ and CD117- cells was investigated in vitro and in vivo. Significantly higher levels of VEGF were secreted from the CD117+ cells than from the CD117- cells (P < 0.001). Most of the CD117- cells died, but the CD117+ cells grew well and differentiated into endothelial cells within 14 days of culture. The CD117+ cells survived and were incorporated in microvessels within 14 days of being implanted into the ischemic hindlimbs of mice, but the CD117- cells did not. The microvessel density and blood perfusion of the ischemic hindlimbs were significantly higher in the CD117+ cell-implanted mice than in the CD117- cell-implanted mice (P < 0.01). The microvessel density in ischemic hindlimbs was also significantly higher in the CD117+ cell-implanted mice than in the total bone marrow cell-implanted mice (P < 0.05). Thus CD117+ stem cells play a key role in the therapeutic angiogenesis induced by bone marrow cell implantation.  相似文献   

12.
This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.  相似文献   

13.
Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell-mediated therapies.  相似文献   

14.
Studies suggest that Gr1(+)CD11b(+) cells have immunoregulatory function, and these cells may play an important role in autoimmune diseases. In this study, we investigated the regulatory role of Gr1(+)CD11b(+) cells in protecting against type 1 diabetes in NOD mice. In this study, we showed that temporary B cell depletion induced the expansion of Gr1(+)CD11b(+) cells. Gr1(+)CD11b(+) cells not only directly suppress diabetogenic T cell function but also can induce regulatory T cell differentiation in a TGF-β-dependent manner. Furthermore, we found that Gr1(+)CD11b(+) cells could suppress diabetogenic CD4 and CD8 T cell function in an IL-10-, NO-, and cell contact-dependent manner. Interestingly, single anti-Gr1 mAb treatment can also induce a transient expansion of Gr1(+)CD11b(+) cells that delayed diabetes development in NOD mice. Our data suggest that Gr1(+)CD11b(+) cells contribute to the establishment of immune tolerance to pancreatic islet autoimmunity. Manipulation of Gr1(+)CD11b(+) cells could be considered as a novel immunotherapy for the prevention of type 1 diabetes.  相似文献   

15.
An earlier study revealed that 4-day-old mice, but not older mice, were infected with invasive Shigella strains. Here we attempted to determine the underlying mechanism that induces inflammation in the intestines of neonate mice after oral Shigella infection. Wild-type BALB/c mice of different ages (7, 14, and 35 days old) were orally administered GFP-expressing Shigella flexneri 5a M90T strain (5 × 109 CFU) and analyzed for colonization 6 h following infection. We found that Shigella localized in the epithelium, lamina propria, and crypt regions of the small intestines of 7-day-old BALB/c mice. Microarray analysis revealed that expression levels of cryptdin and various types of cryptdin-related mRNA (e.g., cryptrs-2, -5, -7, -12 and lysozyme) in the small intestines were significantly lower in 7-day-old than in older mice regardless of Shigella infection status. Interestingly, matrix metalloprotease-7 (matrilysin)-deficient (MAT−/−) mice of B6 background had more colonies and more severe symptoms of inflammation in the intestines than did wild-type B6 mice after oral Shigella challenge. This suggests that cryptdin-related antimicrobial molecules are indispensable for efficient protection against oral Shigella infection.  相似文献   

16.
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.  相似文献   

17.
We investigated the therapeutic efficacy of the selective M1 muscarinic agonist AF267B in the 3xTg-AD model of Alzheimer disease. AF267B administration rescued the cognitive deficits in a spatial task but not contextual fear conditioning. The effect of AF267B on cognition predicted the neuropathological outcome, as both the Abeta and tau pathologies were reduced in the hippocampus and cortex, but not in the amygdala. The mechanism underlying the effect on the Abeta pathology was caused by the selective activation of ADAM17, thereby shifting APP processing toward the nonamyloidogenic pathway, whereas the reduction in tau pathology is mediated by decreased GSK3beta activity. We further demonstrate that administration of dicyclomine, an M1 antagonist, exacerbates the Abeta and tau pathologies. In conclusion, AF267B represents a peripherally administered low molecular weight compound to attenuate the major hallmarks of AD and to reverse deficits in cognition. Therefore, selective M1 agonists may be efficacious for the treatment of AD.  相似文献   

18.
Mesenchymal stem cells (MSCs) inhibit the proliferation or activation of lymphocytes, and their inhibitory effects do not require human leukocyte antigen (HLA)-matching because MSCs express low levels of HLA molecules. Therefore, MSCs may be able to regulate immune responses. In this study, we determined whether MSCs could inhibit psoriasis-like skin inflammation in mice. After induction of psoriasis-like skin inflammation using intradermal injection of IL-23 or topical application of imiquimod with or without treatment with MSC, mouse skins were collected, and H&E staining and real-time PCR were performed. IL-23-induced skin inflammation was inhibited when MSCs were injected on day ?1 and day 7. The expression of proinflammatory cytokines such as IL-6, IL-17, and TNF-α was inhibited by MSC injection, and the expression of chemokines such as CCL17, CCL20, and CCL27 was also decreased in mouse skin. We also determined whether MSCs could not only prevent but also treat psoriasis-like skin inflammation in mice. Furthermore, in vitro experiments also showed anti-inflammatory effects of MSCs. Dendritic cells which are co-cultured with MSCs suppressed CD4+ T cell activation and differentiation, which are important for the pathogenesis of psoriasis. These results suggest that MSCs could be useful for treating psoriasis.  相似文献   

19.
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.  相似文献   

20.
The hypothesis of repression of multipotent stem cells (CFU) by leukemic cells to explain their depletion, previously demonstrated in AKR leukemic mice, was tested. Using arabinosylcytosine to destroy leukemic cells, it was shown that the bone marrow CFU pool was acutely depressed between 2 h and 12 h after treatment. However, 5 to 7 days later, this pool was restored, surpassing the value of the bone marrow pool in normal mice. This seems to indicate that the CFU pool in leukemic mice is potentially capable of proliferating but is repressed by leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号