首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischemia-reperfusion (I/R) injury often leads to myocardial apoptosis and necrosis. Studies have demonstrated the role microRNAs (miRs) played in myocardial I/R injury. Thus, we established a myocardial I/R injury model and a thoracic epidural anesthesia (TEA) model in mice to explore whether microRNA-374 (miR-374) affects myocardial I/R injury. We collected myocardial tissues to evaluate whether TEA exerts a protection effect on myocardial tissues. In addition, the levels of miR-374, dystrobrevin alpha (DTNA), and the statue of the Notch1 axis were detected. Subsequently, cardiomyocytes extracted from TEA mice were treated to regulate their levels of miR-374 and DTNA. After that, cell viability, cell cycle distribution, and apoptosis of cardiomyocytes were assessed. This was followed by the detection of the myocardial infarction area. The mice models of myocardial I/R injury were associated with poorly expressed miR-374 and highly expressed DTNA. TEA was found to protect myocardial tissues against myocardial I/R injury by elevating miR-374 and reducing DTNA. Dual-luciferase reporter assay validated that DTNA was the target gene of miR-374. Cardiomyocytes with overexpressed miR-374 were shown to have downregulated DTNA levels and blocked Notch1 axis. Overexpressed miR-374 was also found to promote the viability and inhibit the apoptosis of cardiomyocytes, as well as to increase the number of cells arrested in the S phase. In accordance with this, the myocardial infarction area was decreased with the upregulated miR-347 and downregulated DTNA. Collectively, these results demonstrated that, by inhibiting the activity of DTNA-mediated Notch1 axis, miR-374 could protect against myocardial I/R injury in mice after TEA.  相似文献   

2.
Pneumonia is an inflammatory condition affecting the lungs, in which pro-inflammatory cytokines are secreted. It has been shown that microRNA-146 (miR-146) is involved in the regulation of immune and inflammatory responses. The present study explored the protective effects of miR-146 overexpression on lipopolysaccharide (LPS)-mediated injury in A549 and H1975 cells. In this study, A549 and H1975 cells were transfected with miR-146 mimic or inhibitor, and then were subjected with LPS. Thereafter, cell viability, colony formation capacity, apoptosis, the release of proinflammatory factors, Sirt1 expression, and the expression of NF-κB and Notch pathway proteins were respectively assessed. As a result, miR-146 overexpression exerted protective functions on LPS-damaged A549 and H1975 cells, as evidenced by the increases in cell viability and colony number, the decrease in apoptotic cell rate, as well as the down-regulations of IL-1, IL-6, and TNF-α. Sirt1 can be positively regulated by miR-146. Furthermore, miR-146 overexpression blocked NF-κB and Notch pathways, while these blocking effects were abolished when Sirt1 was silenced. The findings in the current study indicated that miR-146 protected A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. miR-146 exerted protective functions might be via up-regulation of Sirt1 and thereby blocking NF-κB and Notch pathways.  相似文献   

3.
Sepsis is the leading cause of death in critically ill patients. While myocardial dysfunction has been recognized as a major manifestation in severe sepsis, the underlying molecular mechanisms associated with septic cardiomyopathy remain unclear. In this study, we performed a miRNA array analysis in hearts collected from a severe septic mouse model induced by cecal ligation and puncture (CLP). Among the 19 miRNAs that were dys-regulated in CLP-mouse hearts, miR-223(3p) and miR-223*(5p) were most significantly downregulated, compared with sham-operated mouse hearts. To test whether a drop of miR-223 duplex plays any roles in sepsis-induced cardiac dysfunction and inflammation, a knockout (KO) mouse model with a deletion of the miR-223 gene locus and wild-type (WT) mice were subjected to CLP or sham surgery. We observed that sepsis-induced cardiac dysfunction, inflammatory response and mortality were remarkably aggravated in CLP-treated KO mice, compared with control WTs. Using Western-blotting and luciferase reporter assays, we identified Sema3A, an activator of cytokine storm and a neural chemorepellent for sympathetic axons, as an authentic target of miR-223* in the myocardium. In addition, we validated that miR-223 negatively regulated the expression of STAT-3 and IL-6 in mouse hearts. Furthermore, injection of Sema3A protein into WT mice revealed an exacerbation of sepsis-triggered inflammatory response and myocardial depression, compared with control IgG1 protein-treated WT mice following CLP surgery. Taken together, these data indicate that loss of miR-223/-223* causes an aggravation of sepsis-induced inflammation, myocardial dysfunction and mortality. Our study uncovers a previously unrecognized mechanism underlying septic cardiomyopathy and thereby, may provide a new strategy to treat sepsis.  相似文献   

4.
5.
Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)–mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.  相似文献   

6.
为评价富氢液(hydrogen-rich saline,HRS)对脓毒症小鼠心肌细胞线粒体自噬的调节及其对心功能障碍的治疗作用,选取72只雄性C57BL/6J小鼠作为研究对象,采用随机数字表法分为假手术组(Sham组)、假手术+富氢液组(Sham+HRS组)、脓毒症组(CLP组)、CLP+富氢液组(CLP+HRS组),每组18只。采用盲肠结扎穿孔法建立小鼠CLP模型。Sham+HRS组和CLP+HRS组分别于造模后1、6 h时腹腔注射富氢液10 mL·kg-1。每组随机取6只小鼠,于造模后24 h时收集小鼠颈动脉血样,采用ELISA法测定血液肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin-1β,IL-1β)、肌钙蛋白I(cardiac troponin I,cTnI)和肌酸激酶同工酶(creatine kinase MB,CK-MB)水平;于造模后24 h时取心肌组织,采用荧光素-荧光酶发光法检测ATP,荧光分光光度法检测线粒体膜电位(mitochondrial membrane potential,MMP)。造模后24 h采用Western blot法测定心肌组织线粒体自噬相关蛋白微管关联蛋白轻链3Ⅱ/轻链3Ⅰ(microtubule-associated protein 1 light/protein 3 light,LC3Ⅱ/LC3Ⅰ)和蛋白62(protein 62,P62)的表达水平。结果显示,与Sham组比较,CLP组血清TNF-α、IL-1β、cTnI和CK-MB水平升高,心肌ATP、MMP水平下降,心肌LC3Ⅱ/LC3Ⅰ表达水平上调,P62表达水平下调,差异有统计学意义(P<0.05);与CLP组比较,CLP+HRS组血清TNF-α、IL-1β、cTnI和CK-MB含量下降,心肌组织ATP、MMP水平升高,LC3Ⅱ/LC3Ⅰ表达水平进一步上调,P62表达进一步下调(P<0.05)。结果表明,富氢液对脓毒症小鼠心功能障碍的治疗作用可能是通过调节心肌细胞线粒体自噬实现的。研究旨在探讨富氢液对脓毒症小鼠心功能障碍的治疗作用及机制,以期为富氢液的临床转化提供理论依据。  相似文献   

7.
目的: 探究miR-135b-5p在小鼠脓毒症(sepsis)引起的急性肺损伤(ALI)模型中的表达水平及其对小鼠肺部炎症反应和细胞焦亡的影响。方法: 将C57BL/6小鼠随机分为6组,每组8只,通过盲肠结扎穿刺法(CLP)手术构建CLP诱导的脓毒症小鼠模型:腹腔注射0.1 mg/kg的巴比妥麻醉,腹部纵向切开暴露盲肠,结扎盲肠并用注射器针头进行穿孔,挤出部分肠道内容物后缝合伤口。假手术组(Sham组)开腹后不做任何处理缝合伤口,无CLP手术处理。治疗组分为CLP+NC mimic组,CLP+miR-135b-5p mimic组,CLP+NC mimic+empty vector组,CLP+消皮素D (GSDMD)组,CLP+miR-135b-5p mimic+GSDMD组。治疗组小鼠在CLP手术前一周皮下注射200 μl溶解于生理盐水的NC mimic(200 nmol/L),miR-135b-5p mimic(200 nmol/L),empty vector(100 nmol/L),GSDMD vector(100 nmol/L),每天注射1次,连续一周。术后24 h采用二氧化碳窒息法实施安乐死。采用qRT-PCR检测小鼠肺组织样本中miR-135b-5p和GSDMD mRNA的表达水平;苏木精-伊红(HE)染色检测小鼠肺组织形态和损伤状态;采用5 ml生理盐水冲洗小鼠右肺3次,每次持续约3~5 min,收集肺泡灌洗液(BALF),酶联免疫吸附实验(ELISA)检测小鼠肺泡灌洗液(BALF)中GSDMD、白介素1β(IL-1β)和白介素18(IL-18)的表达水平;蛋白免疫印迹法检测小鼠肺组织内含NLR家族PYRIN域蛋白3(NLRP3),半胱氨酸天冬氨酸蛋白水解酶1(caspase 1)以及切割后的N-端GSDMD端蛋白结构域(cleaved-GSDMD-N)的表达水平。双荧光素酶报告基因检测系统验证miR-135b-5p与GSDMD的靶向结合关系。结果: 与对照组相比,CLP组小鼠肺组织中有大量的炎症细胞浸润,肺泡损伤,细胞间质水肿及肺泡塌陷等病理特征,小鼠肺组织内细胞焦亡相关蛋白(NLRP3,caspase-1和GSDMD)的表达水平明显增加(P<0.01),但miR-135b-5p的表达水平明显下调(P<0.01);与CLP组相比,超表达miR-135b-5p能够明显抑制CLP诱导的小鼠肺组织内细胞焦亡(P<0.01),靶向抑制GSDMD的表达水平(P<0.01);超表达GSDMD能够逆转超表达miR-135b-5p对肺组织细胞焦亡的抑制作用(P<0.01),超表达miR-135b-5p能够通过靶向GSDMD抑制小鼠BALF中IL-1β及IL-18的表达水平(P<0.01)。结论: miR-135b-5p靶向下调GSDMD抑制细胞焦亡,改善脓毒症引起的ALI,为脓毒症诱导的ALI治疗提供了潜在的治疗靶点和理论依据。  相似文献   

8.
Cardiomyocyte apoptosis is a common pathological injury in association with acute myocardial infarction (AMI). In the current study, the relationship between Ras-association domain family 1 (RASSF1) and cardiomyocyte apoptosis was investigated. RASSF1 was significantly over expressed in infarcted myocardial tissues as well as in cardiomyocytes induced by hypoxia. Inhibition of RASSF1 expression alleviated cardiomyocytes apoptosis induced by hypoxia in vitro and reduced cardiomyocytes apoptosis after AMI in vivo. RASSF1 expression was directly modulated by miR-125b, which was further confirmed by luciferase reporter assay. The current study verified that the miR-125b/RASSF1 axis was involved in cardiomyocytes apoptosis. To sum up, these results suggest that RASSF1 downregulation alleviated infarction-induced cardiomyocytes apoptosis and was regulated by miR-125b.  相似文献   

9.
10.
11.
Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. We have previously reported that glucan phosphate (GP) significantly increased survival in a murine model of cecal ligation and puncture (CLP)-induced sepsis. In the present study, we examined the effect of GP on cardiac dysfunction in CLP-induced septic mice. GP was administered to ICR/HSD mice 1 h before induction of CLP. Sham surgically operated mice served as control. Cardiac function was significantly decreased 6 h after CLP-induced sepsis compared with sham control. In contrast, GP administration prevented CLP-induced cardiac dysfunction. Macrophage migration inhibitory factor (MIF) has been implicated as a major factor in cardiomyocyte apoptosis and cardiac dysfunction during septic shock. CLP increased myocardial MIF expression by 88.3% (P < 0.05) and cardiomyocyte apoptosis by 7.8-fold (P < 0.05) compared with sham control. GP administration, however, prevented CLP-increased MIF expression and decreased cardiomyocyte apoptosis by 51.2% (P < 0.05) compared with untreated CLP mice. GP also prevented sepsis-caused decreases in phospho-Akt, phospho-GSK-3beta, and Bcl-2 levels in the myocardium of septic mice. These data suggest that GP treatment attenuates cardiovascular dysfunction in fulminating sepsis. GP administration also activates the phosphoinositide 3-kinase/Akt pathway, decreases myocardial MIF expression, and reduces cardiomyocyte apoptosis.  相似文献   

12.
The aim of the current study was to investigate the effects and the underlying mechanisms of troxerutin on myocardial cell apoptosis during ischemia-reperfusion (I/R) injury. Hypoxia/reoxygenation (H/R) model in neonatal rat cardiomyocytes, and I/R model in rats, were established following troxerutin preconditioning. The quantitative real-time polymerase chain reaction analysis was performed to examine the messenger RNA miR-146a-5p expression in cardiomyocytes and myocardial tissues. Hemodynamic parameters and serum creatine kinase, lactate dehydrogenase, tumor necrosis factor-α, and interleukin-10 were evaluated. Infarct size was examined by 2,3,5-triphenyltetrazolium chloride staining. Besides, myocardial apoptosis was detected by terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the protein levels of caspase-3, Bax, and Bcl-2. The results showed that, troxerutin decreased rat cardiomyocyte apoptosis during H/R injury. Furthermore, the antiapoptotic effect of troxerutin against I/R injury was mediated by miR-146a-5p downregulation. In vivo experiments suggested that troxerutin alleviated myocardial I/R injury in rats via inhibition of miR-146a-5p. In conclusion, troxerutin exerted cardioprotective effects during I/R injury by downregulating miR-146a-5p.  相似文献   

13.
14.
目的:探讨幽门螺杆菌(H.pylori)感染引起人胃上皮细胞microRNA-146a(miR-146a)上调的分子机制。方法:分别用H.pylori重组蛋白、全菌蛋白、培养上清、感染相关炎性因子(IL-8、TNF-α、IL-1β)以及TLR配体刺激人胃上皮细胞,检测细胞miR-146a的表达;通过生物信息学软件预测和荧光素酶实验鉴定miR-146a启动子,分析诱导表达的相关信号通路。结果:除H.pylori感染相关炎性因子IL-8、TNF-α、IL-1β能够明显诱导miR-146a表达上调(P〈0.01)外,其他刺激因素均不能诱导miR-146a的显著表达;当采用RNAi技术将IL-8、TNF-α、IL-1β分别沉默,检测H.pylori诱导miR-146a表达时,各沉默组与对照组均无显著差异。软件预测显示miR-146a启动子序列中含有多个NF-κB结合位点;H.pylori能够显著增加miR-146a启动子荧光素酶报告载体的相对荧光素酶值;当启动子序列中的NF-κB结合位点发生突变,其相对荧光素酶比值显著降低(P〈0.05)。结论:H.pylori感染相关炎性因子IL-8、TNF-α、IL-1β能够诱导miR-146a表达明显上调;NF-κB信号通路在H.pylori感染诱导miR-146a的表达中发挥关键作用。  相似文献   

15.
To examine the role of myocardial interleukin-6 (IL-6) in myocardial inflammation and dysfunction after burn complicated by sepsis, we performed 40% total body surface area contact burn followed by late (7 days) Streptococcus pneumoniae pneumonia sepsis in wild-type (WT) mice, IL-6 knockout (IL-6 KO) mice, and transgenic mice overexpressing IL-6 in the myocardium (TG). Twenty-four hours after sepsis was induced, isolated cardiomyocytes were harvested and cultured in vitro, and supernatant concentrations of IL-6 and tumor necrosis factor (TNF)-alpha were measured. Cardiomyocyte intracellular calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) concentrations were also determined. Separate mice in each group underwent in vivo global hemodynamic and cardiac function assessment by cannulation of the carotid artery and insertion of a left ventricular pressure volume conductance catheter. Hearts from these mice were collected for histopathological assessment of inflammatory response, fibrosis, and apoptosis. In the WT group, there was an increase in cardiomyocyte TNF-alpha, [Ca(2+)](i), and [Na(+)](i) after burn plus sepsis, along with cardiac contractile dysfunction, inflammation, and apoptosis. These changes were attenuated in the IL-6 KO group but accentuated in the TG group. We conclude myocardial IL-6 mediates cardiac inflammation and contractile dysfunction after burn plus sepsis.  相似文献   

16.
This work aims to investigate the function and mechanism of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in myocardial injury induced by sepsis. The sepsis-induced myocardial injury model in mice was established by intraperitoneal injection of LPS (10 mg/kg) in vivo, and cardiomyocyte H9c2 was treated with LPS to mimic sepsis in vitro. CYTOR expression and miR-24 expression were detected by qRT-PCR. After up-regulation or down-regulation of CYTOR and miR-24 expression in the H9c2 cells, and the viability of the cells was detected via MTT assay, and cell apoptosis was detected by TUNEL assay. Western blot was applied to determine the expression level of caspase 3, Bax and X-chromosome-linked inhibitor of apoptosis (XIAP). Interaction between CYTOR and miR-24 was determined by bioinformatics analysis, RT-PCR and dual luciferase reporter assay. Interaction between miR-24 and XIAP was determined through bioinformatics analysis, RT-PCR, western blot and dual luciferase reporter assay. CYTOR was markedly down-regulated. CYTOR interacted with miR-24, and negatively regulated its expression level. Over-expression of CYTOR or transfection of miR-24 inhibitors significantly promoted viability and inhibited apoptosis of H9c2 cells, while the knockdown of CYTOR and transfection of miR-24 mimics had opposite effects. CYTOR suppressed the expression level of apoptosis-related proteins, but miR-24 increased them. miR-24 directly targeted the 3'UTR of XIAP, and suppressed it, and XIAP was modulated indirectly by CYTOR. Down-regulation of CYTOR aggravates sepsis-induced cardiac injury via regulating miR-24 and XIAP.  相似文献   

17.
18.
Phosphoinositide-3-kinase (PI3K)/Akt dependent signaling has been shown to improve outcome in sepsis/septic shock. There is also ample evidence that PI3K/Akt dependent signaling plays a crucial role in maintaining normal cardiac function. We hypothesized that PI3K/Akt signaling may ameliorate septic shock by attenuating sepsis-induced cardiac dysfunction. Cardiac function and survival were evaluated in transgenic mice with cardiac myocyte specific expression of constitutively active PI3K isoform, p110α (caPI3K Tg). caPI3K Tg and wild type (WT) mice were subjected to cecal ligation/puncture (CLP) induced sepsis. Wild type CLP mice showed dramatic cardiac dysfunction at 6 hrs. Septic cardiomyopathy was significantly attenuated in caPI3K CLP mice. The time to 100% mortality was 46 hrs in WT CLP mice. In contrast, 80% of the caPI3K mice survived at 46 hrs after CLP (p<0.01) and 50% survived >30 days (p<0.01). Cardiac caPI3K expression prevented expression of an inflammatory phenotype in CLP sepsis. Organ neutrophil infiltration and lung apoptosis were also effectively inhibited by cardiac PI3k p110α expression. Cardiac high mobility group box–1 (HMGB-1) translocation was also inhibited by caPI3K p110α expression. We conclude that cardiac specific activation of PI3k/Akt dependent signaling can significantly modify the morbidity and mortality associated with sepsis. Our data also indicate that myocardial function/dysfunction plays a prominent role in the pathogenesis of sepsis and that maintenance of cardiac function during sepsis is essential. Finally, these data suggest that modulation of the PI3K/p110α signaling pathway may be beneficial in the prevention and/or management of septic cardiomyopathy and septic shock.  相似文献   

19.
Cardiac dysfunction represents a main component of death induced by sepsis in critical care units. And microRNAs (miRNAs) have been reported as important modulators or biomarkers of sepsis. However, the molecular detail of miRNAs involved in septic cardiac dysfunction remains unclear. Here we showed that endotoxin (lipopolysaccharide, LPS) significantly down-regulated expression of miR-29b-3p in heart. Increased expression of miR-29b-3p by lentivirus improved cardiac function and attenuated damage of cardiac induced by LPS in mice. Furthermore, overexpression or knockdown of miR-29b-3p showed its crucial roles on regulation of apoptosis and production of pro-inflammatory cytokines in NRCMs through directly targeting FOXO3A. miR-29b-3p ameliorates inflammatory damage likely via reducing activation of MAPKs and nuclear-translocation of NF-κB to block LPS-activated NF-κB signaling. Notably, miR-29b is also down-regulated in septic patients' plasma compared with normal subjects, indicating a potential clinical relevance of miR-29b. Taken together, our findings demonstrate that upregulation of miR-29b-3p can attenuate myocardial injury induced by sepsis via regulating FOXO3A, which provide a potential therapy target for interference of septic cardiac dysfunction.  相似文献   

20.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号